DOI QR코드

DOI QR Code

GTS-Visual Logic: Visual Logic and Tool for Analysis and Verification of Secure Requirements in Smart IoT Systems

GTS-VL: 스마트 IoT에서 안전 요구사항 분석과 검증을 위한 시각화 논리 언어 및 도구

  • Received : 2022.03.21
  • Accepted : 2022.05.24
  • Published : 2022.09.30

Abstract

It is necessary to apply process algebra and logic in order to analyze and verify safety requirements for Smart IoT Systems due to distributivity and mobility of the systems over some predefined geo-temporal space. However the analysis and verification cannot be fully intuitive over the space due to the fact that the existing process algebra and logic are very limited to express the distributivity and the mobility. In order to overcome the limitations, the paper presents a new logic, namely for GTS-VL (Geo-Temporal Space-Visual Logic), visualization of the analysis and verification over the space. GTS-VL is the first order logic that deals with relations among the different types of blocks over the space, which is the graph that visualizes the system behaviors specified with the existing dTP-Calculus. A tool, called SAVE, was developed over the ADOxx Meta-Modeling Platform in order to demonstrate the feasibility of the approach, and the advantages and practicality of the approach was shown with the comparative analysis of PBC (Producer-Buffer-Consumer) example between the graphical analysis and verification method over the textual method with SAVE tool.

스마트 IoT의 특징인 분산성 및 이동성에 기반한 안전 요구사항을 분석 및 검증하기 위한 프로세스 대수 및 논리가 요구된다. 하지만 기존의 프로세스 대수 및 논리는 분산성 및 이동성에 대한 표현이 제한적이므로 스마트 IoT의 요구사항 분석 및 검증이 비직관적이다. 이러한 한계를 극복하기 위해, 본 논문에서는 GTS-VL(Geo-Temporal Space-Visual Logic)을 제시한다. GTS-VL은 GTS에서 표현된 블록 간의 관계를 다루는 1차술어논리이며, GTS는 프로세스 대수인 dTP-Calculus를 사용하여 명세한 시스템의 동작 과정을 2차원 시공간에서 표현한 그래프이다. 본 논문에서 사용한 SAVE 도구는 ADOxx Meta-modeling Platform을 통해 개발되었으며, SAVE를 사용하여 PBC(Producer-Buffer-Consumer) 예제의 안전 요구사항을 분석 및 검증하고 문자 및 시각화 기반 검증 방법을 비교 분석하여 장점 및 실용성을 보인다.

Keywords

References

  1. K. Rob. "The real-time city? Big data and smart urbanism," GeoJournal, Vol.79, No.1, pp.1-14, 2014. https://doi.org/10.1007/s10708-013-9516-8
  2. Y. Choe and M. Lee, "Process model to predict non-deterministic behavior of IoT systems," The 11th IFIP WG 8.1 working conference on the Practice of Enterprise Modelling (PoEM), pp.1-12, 2018.
  3. R. R. Smullyan, "First-order logic," Springer Science & Business Media, Vol.43, 2012.
  4. L. Cardelli and A. D. Gordon, "Mobile ambients," In International Conference on Foundations of Software Science and Computation Structure, Springer, pp.140-155, 1998.
  5. J. On, J. Choi, and M. Lee, "A study on scheduler based on CARDMI process algebra for automated control of emergency medical system," Proceedings of the Korean Information Science Society Conference, Korean Institute of Information Scientists and Engineers, pp.65-70, 2008.
  6. P. Coppin, J. Burton, and S. Hockema, "An attention based theory to explore affordances of textual and diagrammatic proofs," International Conference on Theory and Application of Diagrams, Springer, Berlin, Heidelberg, 2010.
  7. A. Shimojima and Y. Katagiri, "An eye-tracking study of exploitations of spatial constraints in diagrammatic reasoning," International Conference on Theory and Application of Diagrams, Springer, Berlin, Heidelberg, 2008.
  8. D. H. Ballard, M. M. Hayhoe, P. K. Pook, and R. P. N. Rao, "Deictic codes for the embodiment of cognition," Behavioral and Brain Sciences, Vol.20, No.4, pp.723-742, 1997. https://doi.org/10.1017/s0140525x97001611
  9. H. G. Fill and D. Karagiannis, "On the conceptua-lisation of modeling methods using the ADOxx meta modeling platform," Enterprise Modeling and Information Systems Architectures (EMISAJ), Vol.8, pp.4-25, 2013.
  10. E. M. Clarke and E. A. Emerson, "Design and synthesis of synchronisation skeletons using branching time Temporal Logic," Workshop on Logic of Programs. Springer, pp.52-71, 1981.
  11. M. Huth and M. Ryan, "Logic in computer science: Modelling and reasoning about systems," Cambridge University Press, 2004.
  12. F. Jahanian and A. K. Mok, "Modechart: A specification language for real-time systems," IEEE Transactions on Software Engineering, Vol.20, pp.933-947, 1994. https://doi.org/10.1109/32.368134
  13. A. G. Cohn, B. Bennett, J. Gooday, and N. M. Gotts, "Qualitative spatial representation and reasoning with the region connection calculus," GeoInformatica, Vol.1, No.3, pp.275-316, 1993.
  14. A. U. Frank, "Qualitative spatial reasoning about distances and directions in geographic space," Journal of Visual Languages and Computing, Vol.3, No.4, pp.343-371, 1992. https://doi.org/10.1016/1045-926X(92)90007-9
  15. D. Ladret and M. Rueher, "VLP: A visual logic programming language," Journal of Visual Languages & Computing, Vol.2, No.2, pp.163-188, 1991. https://doi.org/10.1016/S1045-926X(05)80028-X
  16. V. Gervasi and V. Ambriola, "Quantitative assessment of textual complexity," Complexity in Language and Text, pp.197-228, 2002.
  17. P. Coppin and S. Hockema, "A cognitive exploration of the 'non-visual' nature of geometric proofs," Visual Languages and Logic, pp.81-95, 2009.