DOI QR코드

DOI QR Code

EPMA quantification on the chemical composition of retained austenite in a Fe-Mn-Si-C-based multi-phase steel

  • Yoon‑Uk Heo (Graduate Institute of Ferrous and Energy Materials Technology, Pohang University of Science and Technology) ;
  • Chang‑Gon Jeong (Graduate Institute of Ferrous and Energy Materials Technology, Pohang University of Science and Technology) ;
  • Soo‑Hyun Kim (Graduate Institute of Ferrous and Energy Materials Technology, Pohang University of Science and Technology) ;
  • Gun‑Young Yoon (Korea Institute for Materials Science) ;
  • T. T. T. Trang (Graduate Institute of Ferrous and Energy Materials Technology, Pohang University of Science and Technology) ;
  • Youngyun Woo (Korea Institute for Materials Science) ;
  • Eun Yoo Yoon (Korea Institute for Materials Science) ;
  • Young‑Seon Lee (Korea Institute for Materials Science)
  • Received : 2022.11.09
  • Accepted : 2022.12.05
  • Published : 2022.12.31

Abstract

An electron probe X-ray microanalyzer (EPMA) is an essential tool for studying chemical composition distribution in the microstructure. Quantifying chemical composition using standard specimens is commonly used to determine the composition of individual phases. However, the local difference in chemical composition in the standard specimens brings the deviation of the quantified composition from the actual one. This study introduces how to overcome the error of quantification in EPMA in the practical aspect. The obtained results are applied to evaluate the chemical com position of retained austenite in multi-phase steel. Film-type austenite shows higher carbon content than blocky-type one. The measured carbon contents of the retained austenite show good coherency with the calculated value from the X-ray diffraction.

Keywords

Acknowledgement

The authors thank Mr. Keun-Chang Park in GIFT for his practical help in EPMA analysis. This work is supported by Korea Evaluation Institute of Industrial Technology (KEIT) grant funded by the Korean government (No. 20015140, Development of manufacturing technology for automotive structural parts using giga-grade low yield ratio cold micro-alloyed steel wire-rod).

References

  1. B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd edn. (Prentice-Hall, New York, 2001)
  2. I. Gutierrez-Urrutia, S. Zaeferer, D. Raabe, Coupling of electron channeling with EBSD: Toward the quantitative characterization of deformation structures in the SEM. JOM 65, 1229-1236 (2013)
  3. S.-T. Han, D.-H. Kim, K. Kang, J.-C. Park, J.-D. Joe, Y. Song, J.-S. Lee, Y.-U. Heo, Microscopic study on the origin of poor phosphatability in a multiphase steel. Mater. Charact. 172, 110823 (2021)
  4. Y.-U. Heo, D.H. Kim, N.H. Heo, C.W. Hong, S.-J. Kim, Deformation behavior in medium Mn steel of nanometer-sized α'+γ lamellar structure. Metall. Mater. Trans. A 47, 6004-6016 (2016)
  5. D.-H. Kim, J. Park, J.-D. Joe, Y. Jung, Y. Song, J.-S. Lee, Y.-U. Heo, Enhanced phosphatability by decorating ferrite layer on the surface of a multi-phase steel. Mater. Charact. 194, 112373 (2022a)
  6. D.-H. Kim, J.C. Park, J.-D. Joe, Y. Jung, Y. Song, J.-S. Lee, Y.-U. Heo, Effect of amorphous carbon film on the phosphate formation in a multi-phase steel. Mater. Today Com. 32, 104156 (2022b)
  7. D. Lee, Y.-U. Heo, J.S. Lee, W.-T. Cho, U. Lee, M.-H. Kang, C.H. Yim, AlN-assisted interal oxidation behavior in Al-containing high Mn steels. Mater. Charact. 189, 111967 (2022)
  8. R. Rinaldi, X. Llovet, Electron probe microanalysis: A review of the past, present, and future. Microsc. Microanal. 21, 1053-1069 (2015)
  9. J.-B. Seol, D. Raabe, P.-P. Choi, Y.-R. Im, C.-G. Park, Atomic scale effects of alloying, partitioning, solute drag and austempering on the mechanical properties of high-carbon bainitic-austenitic TRIP steels. Acta Mater. 60, 6183-6199 (2012)
  10. K. Spencer, K.T. Conlon, Y. Brechet, J.D. Embury, The strain induced martensite transformation in austenitic stainless steels: Part2-effect of internal stresses on mechanical response. Mater. Sci. Tech. 25, 18-28 (2009)
  11. M. Toth, C.J. Lobo, M.J. Lysaght, A.E. Vladar, M.T. Postek, Contamination-free imaging by electron induced carbon volatilization in environmental scanning electron microscopy. J. Appl. Phys. 106, 034306 (2009)
  12. J. Trincavelli, S. Limandri, R. Bonetto, Standardless quantification methods in electron probe microanalysis. Spectrochim. Acta B: At. Spectrosc. 101, 76-85 (2014)
  13. D.B. Williams, C.B. Carter, Transmission Electron Microscopy, 2nd edn. (Springer, New York, 2009)
  14. R. Zhu, S. Li, I. Karaman, R. Arroyave, T. Niendorf, H.J. Maier, Multi-phase microstructure design of a low-alloy TRIP-assisted steel through a combined computational and experimental methodology. Acta Mater. 60, 3022-3033 (2012)
  15. T.O. Ziebold, R.E. Ogilvie, Quantitative analysis with the electron microanalyzer. Anal. Chem. 35, 621-627 (2002)