DOI QR코드

DOI QR Code

Microstructural, mechanical, and electrochemical analysis of carbon doped AISI carbon steels

  • Muhammad Ishtiaq (Department of Materials Engineering and Convergence Technology, Gyeongsang National University (GNU)) ;
  • Aqil Inam (Institute of Metallurgy and Materials Engineering, University of the Punjab) ;
  • Saurabh Tiwari (Department of Materials Engineering and Convergence Technology, Gyeongsang National University (GNU)) ;
  • Jae Bok Seol (Department of Materials Engineering and Convergence Technology, Gyeongsang National University (GNU))
  • 투고 : 2022.08.15
  • 심사 : 2022.09.28
  • 발행 : 2022.12.31

초록

The effect of carbon doping contents on the microstructure, hardness, and corrosion properties of heat-treated AISI steel grades of plain carbon steel was investigated in this study. Various microstructures including coarse ferrite-pearlite, fine ferrite-pearlite, martensite, and bainite were developed by different heat treatments i.e. annealing, normalizing, quenching, and austempering, respectively. The developed microstructures, micro-hardness, and corrosion properties were investigated by a light optical microscope, scanning electron microscope, electromechanical (Vickers Hardness tester), and electrochemical (Gamry Potentiostat) equipment, respectively. The highest corrosion rates were observed in bainitic microstructures (2.68-12.12 mpy), whereas the lowest were found in the fine ferritic-pearlitic microstructures (1.57-6.36 mpy). A direct correlation has been observed between carbon concentration and corrosion rate, i.e. carbon content resulted in an increase in corrosion rate (2.37 mpy for AISI 1020 to 9.67 mpy for AISI 1050 in annealed condition).

키워드

과제정보

Principle investigator expresses sincere thanks to Gyeongsang National University, Jinju for providing research facilities. One of the authors is thankful to the Institute of Metallurgy & Materials Engineering, University of the Punjab, Pakistan for research support and to Peoples Steel Mill Limited, Karachi, Pakistan for supplying plain carbon steel.

참고문헌

  1. R.A. Antunes, I. Costa, D.L. Faria, Mat. Res. 6 (2003). https://doi.org/10.1590/S1516-14392003000300015
  2. S. Basak, T.A. Skotheim, R.L. Elsenbaumer, J.R. Reynolds, Handbook of Conducting Polymers, 2nd edn. (Marcel Dekker, New York, 1998)
  3. D. Clover, B. Kinsella, B. Pejcic, R.D. Marco, J. Appl. Electrochem. 35 (2005). https://doi.org/10.1007/s10800-004-6207-7
  4. B.A. Cots, F. Oliveira, L.G. Babosa, C.B.M. Lacerda, F.G.S. Arayo, The Relationship between Structure and Mechanical Properties of Metals NPL Symposium HMSO (London, 2003) pp. 455-456.
  5. A. Dugstad, H. Hemmer, M. Seiersten, Corrosion (2000), Paper24 (NACE International, Houston, 2000)
  6. F. Farelas, M. Galicia, B. Brown, S. Nesic, H. Castaneda, Corr. Sci. 52 (2012). https://doi.org/10.1016/j.corsci.2009.10.007
  7. M.A.M. Fauzi, S.N. Saud, E. Hamzah, M.F. Mamat, L.J. Ming, J. Bio- and Tribocorrosion. 5, 37 (2019). https://doi.org/10.1007/s40735-019-0230-z
  8. M.G. Fontana, Corrosion Engineering (McGraw Hill, New York, 1986)
  9. T.L. Gerke, J.B. Maynard, M.R. Schock, D.L. Lytle, Corr. Sci 50 (2008). https://doi.org/10.1016/j.corsci.2008.05.005
  10. T. Gheno, D. Monceau, J. Zhang, D.J. Young, Corr. Sci. 53 (2011). https://doi.org/10.1016/j.corsci.2011.05.013
  11. E. Gulbrandsen, R. Nyborg, T. Loland, K. Nisancioglu, Corrosion (2000), Paper23 (NACE International, Houston, 2000)
  12. J. Guo, C.J. Shang, S.W. Yang et al., Efect of carbon content on mechanical properties and weather resistance of high performance bridge steels. J. Iron Steel Res. Int. 16, 63-69 (2009). https://doi.org/10.1016/S1006-706X(10)60029-5
  13. J. Guo, S. Yang, S. Chengjia, W. Ying, H. Xinlai, Corr. Sci. 51 (2008b). https://doi.org/10.1016/j.corsci.2008.10.025
  14. R. John, C. Sweet, Corrosion (1998), Paper20 (NACE International, Houston, 1998)
  15. J.-Y. Kang, H.-Y. Ha, S.-D. Kim, J.Y. Park, M.-H. Jang, T.-H. Lee, Applied microscopy. Appl Microscopy 49, 13 (2019). https://doi.org/10.1186/s42649-019-0014-4 Kang et al.
  16. S. Kang, S. Yoon, S.J. Lee, The Iron and Steel Institute of Japan (ISIJ) International, vol 54 (2014). https://doi.org/10.2355/isijinternational.54.997
  17. P.K. Katiyar, S. Misra, K. Mondal, Metall. Mater. Trans. A 3 (2019). https://doi.org/10.1007/s11661-018-5086-1
  18. M.B. Kermani, A. Morshed, Corrosion. 59, 8 (2003). https://doi.org/10.5006/1.3277596
  19. J.G. Kim, J.W. Bae, J.M. Park, W. Woo, S. Harjo, S. Lee, H.S. Kim, Met. Mater. Int. 27 (2021a). https://doi.org/10.1007/s12540-020-00657-1
  20. J.G. Kim, J.B. Seol, J.M. Park, H. Sung, S.H. Park, H.S. Kim, Met. Mater. Int. 27 (2021b). https://doi.org/10.1007/s12540-021-00991-y
  21. J.-G. Kim, Y. Yong-Jae, J.-K. Yoo, Met. Mater. Int. 11, 3 (2005a)
  22. J.W. Kim, J.W. Choi, D.B. Lee, Met. Mater. Int. 11, 2 (2005b)
  23. Y. Kim, J. Jung, H.K. Park, H.S. Kim, Met. Mater. Int. (2022). https://doi.org/10.1007/s12540-022-01200-0
  24. K.K. Ko, J.H. Jang, S. Tiwari, H.J. Bae, H.K. Sung, J.G. Kim, J.B. Seol, Appl Microscopy 52, 5 (2022). https://doi.org/10.1186/s42649-022-00074-1
  25. G. Koch, J. Verney, N. Thompson, O. Moghissi, M. Gould, J. Payer, NACE International Impact Report (2013)
  26. A.K. Kuruvilla, AMPITIAC Newsletter 2(2), 1 (1998)
  27. D.B. Lee, Met. Mater. Int. 20(2) (2014). https://doi.org/10.1007/s12540-014-2008-7
  28. K.H. Lee, K.S. Nam, Y.M. Park et al., A study of the corrosion properties of plasma nitrocarburized and oxidized AISI 1020 steels. Met. Mater. Int. 8, 381-385 (2002). https://doi.org/10.1007/BF03186111
  29. M.J. Li, Z.W. Liu, Y.C. Chen, Y. Hai, Wat. Res 106 (2016a). https://doi.org/10.1016/j.watres.2016.10.044
  30. M.J. Li, Z.W. Liu, Y.C. Chen, Y. Hai, Water Res. 106 (2016b). https://doi.org/10.1016/j.watres.2016.10.044
  31. D.A. Lytle, T.J. Sorg, C. Frietch, Environ. Sci. Technol. 38 (2004). https://doi.org/10.1021/es049850v
  32. J.E. Maslar, W.S. Hurst, W.J. Bowers, J.H. Hendricks, M.I. Aquino, I. Levin, App. Sur. Sci. 180 (2001). https://doi.org/10.1016/S0169-4332(01)00338-5
  33. S. Nesic, L. Lunde, Corrosion. 50, 9 (1994). https://doi.org/10.5006/1.3293548
  34. S. Nesic, J. Postlethwaite, S. Olsen, Corrosion. 52, 4 (1996). https://doi.org/10.5006/1.3293640
  35. C.A. Palacios, J.R. Shadley, Corrosion. 49, 8 (1993). https://doi.org/10.5006/1.3316101
  36. C.Y. Peng, G.V. Korshin, R.L. Valentine, A.S. Hill, M.J. Friedman, S.H. Reiber, Wat. Res. 44 (2010). https://doi.org/10.1016/j.watres.2010.05.043
  37. V.G. Pleshivtsev, G.A. Filippov, Y.A. Pak, O.O. Livanova, Metallurgist 53 (2009). https://doi.org/10.1007/s11015-009-9188-2
  38. H.R. Riazi, I. Danaee, M. Peykari, Met. Mater. Int. 19(2) (2013). https://doi.org/10.1007/s12540-013-2014-1
  39. P.R. Roberge, Handbook of Corrosion Engineering (Second Edition (McGraw-Hill Education, 2012) https://www.accessengineeringlibrary.com/content/book/9780071750370
  40. P. Sarin, V.L. Snoeyink, J. Bebee, K.K. Jim, M.A. Beckett, W.M. Kriven, J.A. Clement, Wat. Res. 38 (2004a). https://doi.org/10.1016/j.watres.2003.11.022
  41. P. Sarin, V.L. Snoeyink, D.A. Lytle, W.M. Kriven, J. Environ. Eng. 130 (2004b). https://doi.org/10.1061/(ASCE)0733-9372(2004)130:4(364)
  42. G. Schmitt, M. Horstemeier, Corrosion (2006), Paper 112 (NACE, International, Houston, 2006)
  43. M.R. Schock, R.N. Hyland, M.M. Welch, Environ. Sci. Technol. 42 (2008). https://doi.org/10.1021/es702488v
  44. H. Takabe, M. Ueda, Corrosion, (2001), Paper 66 (NACE, Houston, 2001) 
  45. Z.J. Tang, S. Hong, W.Z. Xiao, J. Taylor, Corr. Sci. 48 (2006). https://doi.org/10.1016/j.corsci.2005.02.005
  46. O.H. Tuovinen, K.S. Button, A. Vuorinen, L. Carlson, D.M. Mair, L.A. Yut, J. Am. Wat. Works Assoc. 72 (1980). https://doi.org/10.1002/j.1551-8833.1980.tb04599.x
  47. M. Ueda, H. Takabe, Corrosion (1999), Paper13 (NACE International, Houston, 1999)
  48. H.H. Uhling, R.W. Reive, Corrosion and Corrosion Control (Wiley, New York, 1985)
  49. C. Waard, U. Lotz, A. Dugstad, Corrosion (1995), Paper128 (NACE International, Houston, 1995)
  50. H. Wang, S. Masters, M.A. Edwards, J.O. Falkinham, A. Pruden, Environ. Sci. Technol. 48 (2014). https://doi.org/10.1021/es402636u
  51. K. Xiao, Z. Li, J. Song, Z. Bai, W. Xue, J. Wu, C. Dong, Met. Mater. Int. 27 (2021). https://doi.org/10.1007/s12540-019-00590-y
  52. F. Yang, B.Y. Shi, J.N. Gu, D.S. Wang, M. Yang, Wat. Res. 46 (2012b). https://doi.org/10.1016/j.watres.2012.07.031
  53. F. Yang, B.Y. Shi, J.N. Gu, M.Y. Wang, Wat. Res 46 (2012a). https://doi.org/10.1016/j.watres.2012.07.031
  54. C. Yong, L. Shuming, S. Kate, Y. Kanghua, H. Hongying, J. Wei, L. Yuhong, Wat. Res. 88(2016). https://doi.org/10.1016/j.watres.2015.11.021