DOI QR코드

DOI QR Code

Regulatory mechanisms of the store-operated Ca2+ entry through Orai1 and STIM1 by an adaptor protein in non-excitable cells

  • Kang, Jung Yun (Department of Dental Hygiene, College of Software Digital Healthcare Convergence, Yonsei University) ;
  • Yang, Yu-Mi (Department of Oral Biology, Yonsei University College of Dentistry)
  • Received : 2022.09.13
  • Accepted : 2022.09.19
  • Published : 2022.09.30

Abstract

Store-operated Ca2+ entry (SOCE) represents one of the major Ca2+ entry routes in non-excitable cells. It is involved in a variety of fundamental biological processes and the maintenance of Ca2+ homeostasis. The Ca2+ release-activated Ca2+ (CRAC) channel consists of stromal interaction molecule and Orai; however, the role and action of Homer proteins as an adaptor protein to SOCE-mediated Ca2+ signaling through the activation of CRAC channels in non-excitable cells still remain unknown. In the present study, we investigated the role of Homer2 in the process of Ca2+ signaling induced by the interaction between CRACs and Homer2 proteins in non-excitable cells. The response to Ca2+ entry by thapsigargin-mediated Ca2+ store depletion remarkably decreased in pancreatic acinar cells of Homer2-/- mice, as compared to wild-type cells. It also showed critical differences in regulated patterns by the specific blockers of SOCE in pancreatic acinar cells of Homer2-/- mice. The response to Ca2+ entry by the depletion in Ca2+ store markedly increased in the cellular overexpression of Orai1 and STIM1 as compared to the overexpression of Homer2 in cells; however, this response was remarkably inhibited by the overexpression of Orai1, STIM1, and Homer2. These results suggest that Homer2 has a critical role in the regulatory action of SOCE activity and the interactions between CRAC channels.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2015R1D1A1A01057277; NRF-2020R1A2C1004942; NRF-2022R1G1A1004843).

References

  1. Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 2003;4:517-29. doi: 10.1038/nrm1155.
  2. Parekh AB, Putney JW Jr. Store-operated calcium channels. Physiol Rev 2005;85:757-810. doi: 10.1152/physrev.00057.2003.
  3. Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA, Cahalan MD. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 2005;437:902-5. doi:10.1038/nature04147.
  4. Peinelt C, Vig M, Koomoa DL, Beck A, Nadler MJ, Koblan-Huberson M, Lis A, Fleig A, Penner R, Kinet JP. Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nat Cell Biol 2006;8:771-3. doi: 10.1038/ncb1435.
  5. Soboloff J, Spassova MA, Tang XD, Hewavitharana T, Xu W, Gill DL. Orai1 and STIM reconstitute store-operated cal- cium channel function. J Biol Chem 2006;281:20661-5. doi:10.1074/jbc.C600126200.
  6. Yuan JP, Zeng W, Huang GN, Worley PF, Muallem S. STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels. Nat Cell Biol 2007;9:636-45. doi: 10.1038/ncb1590.
  7. Zeng W, Yuan JP, Kim MS, Choi YJ, Huang GN, Worley PF, Muallem S. STIM1 gates TRPC channels, but not Orai1, by electrostatic interaction. Mol Cell 2008;32:439-48. doi:10.1016/j.molcel.2008.09.020.
  8. Yuan JP, Zeng W, Dorwart MR, Choi YJ, Worley PF, Muallem S. SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat Cell Biol 2009;11:337-43. doi: 10.1038/ncb1842.
  9. Wang Y, Deng X, Mancarella S, Hendron E, Eguchi S, Soboloff J, Tang XD, Gill DL. The calcium store sensor, STIM1, reciprocally controls Orai and CaV1.2 channels. Science 2010;330: 105-9. doi: 10.1126/science.1191086.
  10. Dionisio N, Smani T, Woodard GE, Castellano A, Salido GM, Rosado JA. Homer proteins mediate the interaction between STIM1 and Cav1.2 channels. Biochim Biophys Acta 2015; 1853:1145-53. doi: 10.1016/j.bbamcr.2015.02.014.
  11. Kiselyov K, Mignery GA, Zhu MX, Muallem S. The N-terminal domain of the IP3 receptor gates store-operated hTrp3 channels. Mol Cell 1999;4:423-9. doi: 10.1016/s1097-2765(00) 80344-5.
  12. Yuan JP, Kiselyov K, Shin DM, Chen J, Shcheynikov N, Kang SH, Dehoff MH, Schwarz MK, Seeburg PH, Muallem S, Worley PF. Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell 2003;114:777-89. doi:10.1016/s0092-8674(03)00716-5.
  13. Worley PF, Zeng W, Huang G, Kim JY, Shin DM, Kim MS, Yuan JP, Kiselyov K, Muallem S. Homer proteins in Ca2+ signaling by excitable and non-excitable cells. Cell Calcium 2007; 42:363-71. doi: 10.1016/j.ceca.2007.05.007.
  14. Jardin I, Albarran L, Bermejo N, Salido GM, Rosado JA. Homers regulate calcium entry and aggregation in human platelets: a role for Homers in the association between STIM1 and Orai1. Biochem J 2012;445:29-38. doi: 10.1042/BJ20120471.
  15. Brakeman PR, Lanahan AA, O'Brien R, Roche K, Barnes CA, Huganir RL, Worley PF. Homer: a protein that selectively binds metabotropic glutamate receptors. Nature 1997;386:284-8. doi: 10.1038/386284a0.
  16. Jia S, Rodriguez M, Williams AG, Yuan JP. Homer binds to Orai1 and TRPC channels in the neointima and regulates vascular smooth muscle cell migration and proliferation. Sci Rep 2017;7:5075. doi: 10.1038/s41598-017-04747-w.
  17. Shin DM, Dehoff M, Luo X, Kang SH, Tu J, Nayak SK, Ross EM, Worley PF, Muallem S. Homer 2 tunes G protein-coupled receptors stimulus intensity by regulating RGS proteins and PLCbeta GAP activities. J Cell Biol 2003;162:293-303. doi:10.1083/jcb.200210109.
  18. Kang JY, Kang N, Yang YM. Regulation of the expression and function of TRPCs and Orai1 by Homer2 in mouse pancreatic acinar cells. Int J Oral Biol 2021;46:134-9. doi: 10.11620/IJOB.2021.46.3.134.
  19. Yang YM, Lee J, Jo H, Park S, Chang I, Muallem S, Shin DM. Homer2 protein regulates plasma membrane Ca2+ -ATPase- mediated Ca2+ signaling in mouse parotid gland acinar cells. J Biol Chem 2014;289:24971-9. doi: 10.1074/jbc.M114.577221.
  20. Kang N, Kang JY, Shin DM, Yang YM. Homer2 regulates amylase secretion via physiological calcium oscillations in mouse parotid gland acinar cells. Int J Oral Biol 2020;45:58-63. doi:10.11620/IJOB.2020.45.2.58.
  21. Stiber JA, Tabatabaei N, Hawkins AF, Hawke T, Worley PF, Williams RS, Rosenberg P. Homer modulates NFAT-dependent signaling during muscle differentiation. Dev Biol 2005; 287:213-24. doi: 10.1016/j.ydbio.2005.06.030.
  22. Huang GN, Huso DL, Bouyain S, Tu J, McCorkell KA, May MJ, Zhu Y, Lutz M, Collins S, Dehoff M, Kang S, Whartenby K, Powell J, Leahy D, Worley PF. NFAT binding and regulation of T cell activation by the cytoplasmic scaffolding Homer proteins. Science 2008;319:476-81. doi: 10.1126/science.1151227.
  23. Son A, Kang N, Oh SY, Kim KW, Muallem S, Yang YM, Shin DM. Homer2 and Homer3 modulate RANKL-induced NFATc1 signaling in osteoclastogenesis and bone metabolism. J Endocrinol 2019;242:241-9. doi: 10.1530/JOE-19-0123.
  24. Kang JY, Kang N, Shin DM, Yang YM. Deficiencies of Homer2 and Homer3 accelerate aging-dependent bone loss in mice. Int J Oral Biol 2020;45:126-33. doi: 10.11620/IJOB.2020.45.3.126.
  25. Rao W, Peng C, Zhang L, Su N, Wang K, Hui H, Dai SH, Yang YF, Luo P, Fei Z. Homer1a attenuates glutamate-induced oxidative injury in HT-22 cells through regulation of store-operated calcium entry. Sci Rep 2016;6:33975. doi:10.1038/srep33975.
  26. Soboloff J, Rothberg BS, Madesh M, Gill DL. STIM proteins: dynamic calcium signal transducers. Nat Rev Mol Cell Biol 2012;13:549-65. doi: 10.1038/nrm3414.
  27. Lopez JJ, Albarran L, Gomez LJ, Smani T, Salido GM, Rosado JA. Molecular modulators of store-operated calcium entry. Biochim Biophys Acta 2016;1863:2037-43. doi: 10.1016/j.bbamcr.2016.04.024.
  28. Serwach K, Gruszczynska-Biegala J. Target molecules of STIM proteins in the central nervous system. Front Mol Neurosci 2020;13:617422. doi: 10.3389/fnmol.2020.617422.
  29. Wei M, Zhou Y, Sun A, Ma G, He L, Zhou L, Zhang S, Liu J, Zhang SL, Gill DL, Wang Y. Molecular mechanisms underlying inhibition of STIM1-Orai1-mediated Ca2+ entry induced by 2-aminoethoxydiphenyl borate. Pflugers Arch 2016;468: 2061-74. doi: 10.1007/s00424-016-1880-z.
  30. Tian C, Du L, Zhou Y, Li M. Store-operated CRAC channel inhibitors: opportunities and challenges. Future Med Chem 2016;8:817-32. doi: 10.4155/fmc-2016-0024.
  31. DeHaven WI, Smyth JT, Boyles RR, Bird GS, Putney JW Jr. Complex actions of 2-aminoethyldiphenyl borate on store-operated calcium entry. J Biol Chem 2008;283:19265-73. doi:10.1074/jbc.M801535200.
  32. Clapham DE, Runnels LW, Strubing C. The TRP ion channel family. Nat Rev Neurosci 2001;2:387-96. doi: 10.1038/35077544