Convolution Neural Network 기반의 유출량 모의를 위한 자료구축 방법

  • Published : 2022.08.31

Abstract

Keywords

References

  1. Bottou, L., 2010, Large-scale machine learning with stochastic gradient descent. In Proceedings of the COMPST AT 2010 NEC Labs America, Princeton, NJ, USA, 22-27 August 2010.
  2. Chen, Z, and Ho, P,-H., 2019, Global-connected network with generalized ReLU activation. Pattern Recognit. 96, 106961.
  3. Kingma, D., Ba, J., 2014, Adam: A Method for Stochastic Optimization. arXiv, arXiv:1412.6980.
  4. Kratzert, F., Klotz, 0., Brenner, C, Schulz, K, Herrnegger, M., 2018, Rainfall-runoffmodelling using long short-term memory (LSTM) networks. Hydrol. Earth Syst. Sci, 22 (11), 6005 -6022.
  5. LeCun, y, Bottou, L., Bengio, y, Haffner, p., 1998, Gradient-based learning applied to document recognition. Proc, IEEE, 86, 2278-2324. https://doi.org/10.1109/5.726791
  6. Maier, H., Jain, A, Dandy, G., Sudheer, K. P., 2010, Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions. Environ. Model. Softw. 25, 891-909. https://doi.org/10.1016/j.envsoft.2010.02.003
  7. Song, C, M., 2022, Data construction methodology for convolution neural network based daily runoff prediction and assessment of its applicabilrty, J. Hydrol. 605, 127324.
  8. Yaseen, Z. M., Sulaiman, S. O., Deo, R. C., Chau, K. -W., 2019, An enhanced extreme learning machine model for river flow forecasting: State-of-the-art, practical applications in water resource engineering area and future research direction. J. Hydrol. 569, 387-408. https://doi.org/10.1016/j.jhydrol.2018.11.069