DOI QR코드

DOI QR Code

Antioxidative and Circadian Rhythm Regulation Effect of Quercus gilva Extract

  • HUH, Jin-Sung (Forest Biomaterials Research Center, National Institute of Forest Science) ;
  • LEE, Sora (Forest Biomaterials Research Center, National Institute of Forest Science) ;
  • KIM, Dong-Soo (Forest Biomaterials Research Center, National Institute of Forest Science) ;
  • CHOI, Myung Suk (Division of Environmental Forest Science, Gyeongsang National University) ;
  • CHOI, Hyunmo (Forest Biomaterials Research Center, National Institute of Forest Science) ;
  • LEE, Kyung-Ha (Department of Molecular Biology, Pusan National University)
  • Received : 2022.04.14
  • Accepted : 2022.08.25
  • Published : 2022.09.25

Abstract

Herein, water and ethanol extracts were obtained from the leaves, branches, kernels, and pericarp of Quercus gilva and subsequently analyzed for antioxidant activity and circadian rhythm regulation effects. Candidate components that may affect circadian rhythm and antioxidant activity were investigated to discover potential functional materials. Antioxidant activity was analyzed via 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity assays, showing that the hot water extract exhibited higher activity than that of the ethanol extract. In particular, the branch extract showed high antioxidant activity. By measuring total contents of polyphenols, flavonoids, and tannins, the hot water branch extract showed the highest concentrations, highlighting their significant contribution to the antioxidant activity. Examination of the circadian rhythm regulation of each extract showed that the ethanol extract exhibited greater impacts on the circadian rhythm amplitude compared to the water extract. The branch ethanol extract induced circadian rhythm amplitude changes via clock gene Bmal1 expression regulation. Determination of 12 phenolic compound concentrations showed that the branch ethanol extract contained many phenolic compounds, including catechin. This suggests that these com- pounds affected circadian rhythm regulation. In conclusion, the hot water branch extract has potential as an natural antioxidant material, while the corresponding ethanol extract has potential as a functional material for regulating circadian rhythm.

Keywords

Acknowledgement

This study was funded by the Forestry Science Research Project (No. FP0702-2020-01) of the Korea Forest Service.

References

  1. Badhani, B., Sharma, N., Kakkar, R. 2015. Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Advances 5(35): 27540-27557. https://doi.org/10.1039/C5RA01911G
  2. Barlow, S.M. 1990. Toxicological Aspects of Antioxidants Used as Food Additives. In: Food Antioxidants. Elsevier Applied Food Science Series, Ed. by Hudson, B.J.F. Elsevier, London, UK.
  3. Bernatoniene, J., Kopustinskiene, D.M. 2018. The role of catechins in cellular responses to oxidative stress. Molecules 23(4): 965. https://doi.org/10.3390/molecules23040965
  4. Block, G. 1993. Vitamin C, cancer and aging. Age 16(2): 55-58. https://doi.org/10.1007/BF02435037
  5. Blois, M.S. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181(4617): 1199-1200. https://doi.org/10.1038/1811199a0
  6. Branen, A.L. 1975. Toxicology and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. Journal of the American Oil Chemists' Society 52(2): 59-63. https://doi.org/10.1007/BF02901825
  7. Cencioni, C., Spallotta, F., Martelli, F., Valente, S., Mai, A., Zeiher, A.M., Gaetano, C. 2013. Oxidative stress and epigenetic regulation in ageing and age-related diseases. International Journal of Molecular Sciences 14(9): 17643-17663. https://doi.org/10.3390/ijms140917643
  8. Cha, H.K., Chung, S., Lim, H.Y., Jung, J.W., Son, G.H. 2019. Small molecule modulators of the circadian molecular clock with implications for neuropsychiatric diseases. Frontiers in Molecular Neuroscience 11: 496. https://doi.org/10.3389/fnmol.2018.00496
  9. Chen, Z.Y., Chan, P.T., Ho, K.Y., Fung, K.P., Wang, J. 1996. Antioxidant activity of natural flavonoids is governed by number and location of their aromatic hydroxyl groups. Chemistry and Physics of Lipids 79(2): 157-163. https://doi.org/10.1016/0009-3084(96)02523-6
  10. Darley-Hill, S., Johnson, W.C. 1981. Acorn dispersal by the blue jay (Cyanocitta cristata). Oecologia 50(2): 231-232. https://doi.org/10.1007/BF00348043
  11. Duval, B., Shetty, K. 2001. The stimulation of phenolics and antioxidant activity in pea (Pisum sativum) elicited by genetically transformed anise root extract. Journal of Food Biochemistry 25(5): 361-377. https://doi.org/10.1111/j.1745-4514.2001.tb00746.x
  12. Ebrahimzadeh, M.A., Enayatifard, R., Khalili, M., Ghaffarloo, M., Saeedi, M., Charati, J.Y. 2014. Correlation between sun protection factor and antioxidant activity, phenol and flavonoid contents of some medicinal plants. Iranian Journal of Pharmaceutical Research 13(3): 1041-1047.
  13. Ella Nkogo, L.F., Bopenga Bopenga, C.S.A., Ngohang, F.E., Mengome, L.E., Aboughe Angone, S., Edou Engonga, P. 2022. Phytochemical and anti-termite efficiency study of Guibourtia tessmanii (harms) J. Leonard (Kevazingo) bark extracts from Gabon. Journal of the Korean Wood Science Technology 50(2): 113-125. https://doi.org/10.5658/WOOD.2022.50.2.113
  14. Feskanich, D., Ziegler, R.G., Michaud, D.S., Giovannucci, E.L., Speizer, F.E., Willett, W.C., Colditz, G.A. 2000. Prospective study of fruit and vegetable consumption and risk of lung cancer among men and women. Journal of the National Cancer Institute 92(22): 1812-1823. https://doi.org/10.1093/jnci/92.22.1812
  15. Folin, O., Denis, W. 1915. A colorimetric method for the determination of phenols (and phenol derivatives) in urine. Journal of Biological Chemistry 22(2): 305-308. https://doi.org/10.1016/S0021-9258(18)87648-7
  16. Forouzanfar, F., Gholami, J., Foroughnia, M., Payvar, B., Nemati, S., Khodadadegan, M.A., Saheb, M., Hajali, V. 2021. The beneficial effects of green tea on sleep deprivation-induced cognitive deficits in rats: The involvement of hippocampal antioxidant defense. Heliyon 7(11): e08336. https://doi.org/10.1016/j.heliyon.2021.e08336
  17. Gloston, G.F., Yoo, S.H., Chen, Z.J. 2017. Clock-enhancing small molecules and potential applications in chronic diseases and aging. Frontiers in Neurology 8: 100.
  18. Halliwell, B., Gutteridge, J.M.C. 1990. Role of free radicals and catalytic metal ions in human disease: An overview. Methods in Enzymology 186: 1-85. https://doi.org/10.1016/0076-6879(90)86093-B
  19. He, B., Nohara, K., Park, N., Park, Y.S., Guillory, B., Zhao, Z., Garcia, J.M., Koike, N., Lee, C.C., Takahashi, J.S., Yoo, S.H., Chen, Z. 2016. The small molecule Nobiletin targets the molecular oscillator to enhance circadian rhythms and protect against metabolic syndrome. Cell Metabolism 23(4): 610-621. https://doi.org/10.1016/j.cmet.2016.03.007
  20. He, Y.C., Wu, M.J., Lei, X.L., Yang, J.F., Gao, W., Bae, Y.S., Kim, T.H., Choi, S.E., Li, B.T. 2021. Gallotannins from nut shell extractives of Camellia oleifera. Journal of the Korean Wood Science and Technology 49(3): 267-273. https://doi.org/10.5658/WOOD.2021.49.3.267
  21. Hidayat, A., Turjaman, M., Faulina, S.A., Ridwan, F., Najmulah, A., lrawadi, T.T., Iswanto, A.H. 2019. Antioxidant and antifungal activity of endophytic fungi associated with agarwood trees. Journal of the Korean Wood Science and Technology 47(4): 459-471. https://doi.org/10.5658/WOOD.2019.47.4.459
  22. Hildreth, S.B., Littleton, E.S., Clark, L.C., Puller, G.C., Kojima, S., Winkel, B.S.J. 2021. Crosstalk between flavonoids and the plant circadian clock. bioRxiv. https://doi.org/10.1101/2021.07.15.452546
  23. Jeong, Y.S., Jung, H.K., Youn, K.S., Kim, M.O., Hong, J.H. 2009. Physiological activities of the hot water extract from Eriobotrya japonica Lindl. Journal of the Korean Society of Food Science and Nutrition 38(8): 977-982. https://doi.org/10.3746/JKFN.2009.38.8.977
  24. Jung, J.Y., Ha, S.Y., Yang, J.K. 2021. The effect of wood extract as a water-soluble fertilizer in the growth of Lactuca sativa. Journal of the Korean Wood Science and Technology 49(4): 384-393. https://doi.org/10.5658/WOOD.2021.49.4.384
  25. Kim, I.S., Lee, K.M., Shim, D., Kim, J.J., Kang, H.I. 2020. Plus tree selection of Quercus salicina Blume and Q. glauca Thunb. and its implications in evergreen oaks breeding in Korea. Forests 11(7): 735. https://doi.org/10.3390/f11070735
  26. Kira, T. 1991. Forest ecosystems of east and southeast Asia in a global perspective. Ecological Research 6(2): 185-200. https://doi.org/10.1007/BF02347161
  27. Kuwata, T., Kitagawa, M., Kasuga, T. 1993. Proliferative activity of primary cutaneous melanocytic tumours. Virchows Archiv A 423(5): 359-364. https://doi.org/10.1007/BF01607148
  28. Kwon, J.H., Kim, S.J., Lee, J.E., Lee, S.J., Kim, S.K., Kim, J.S., Byun, M.W. 2002. Physicochemical and organoleptic properties of starch isolated from gamma-irradiated acorn. Korean Journal of Food Science and Technology 34: 1007-1012.
  29. Kwon, T.D., Choi, S.W., Lee, S.J. Chung, K.W., Lee, S.C. 2001. Effects of polyphenol or vitamin C ingestion on antioxidative activity during exercise in rats. Korean Journal of Physical Education 3: 891-899.
  30. Lapornik, B., Prosek, M., Wondra, A.G. 2005. Comparison of extracts prepared from plant by-products using different solvents and extraction time. Journal of Food Engineering 71(2): 214-222. https://doi.org/10.1016/j.jfoodeng.2004.10.036
  31. Lee, M.H., Jeong, J.H., Oh, M.J. 1992. Antioxidative activity of gallic acid in acorn extract. Journal of the Korean Society of Food Science and Nutrition 21(6): 693-700.
  32. Lee, S.M., You, Y.H., Kim, K.M., Park, J.J., Jeong, C.S., Jhon, D.Y., Jun W.J. 2012. Antioxidant activities of native Gwangyang Rubus coreanus Miq. Journal of the Korean Society of Food Science and Nutrition 41(3): 327-332. https://doi.org/10.3746/JKFN.2012.41.3.327
  33. Lee, S.Y., Lee, D.S., Cho, S.M., Kim, J.C., Park, M.J., Choi, I.G. 2021. Antioxidant properties of 7 domestic essential oils and identification of physiologically active components of essential oils against Candida albicans. Journal of the Korean Wood Science and Technology 49(1): 23-43. https://doi.org/10.5658/WOOD.2021.49.1.23
  34. Lellupitiyage Don, S.S.L., Robertson, K.L., Lin, H.H., Labriola, C., Harrington, M.E., Taylor, S.R., Farkas, M.E. 2020. Nobiletin affects circadian rhythms and oncogenic characteristics in a cell-dependent manner. PLOS ONE 15(7): e0236315. https://doi.org/10.1371/journal.pone.0236315
  35. Manurung, H., Sari, R.K., Syafii, W., Cahyaningsih, U., Ekasari, W. 2019. Antimalarial activity and phytochemical profile of ethanolic and aqueous extracts of bidara laut (Strychnos ligustrina Blum) wood. Journal of the Korean Wood Science and Technology 47(5): 587-596. https://doi.org/10.5658/WOOD.2019.47.5.587
  36. Mira, L., Tereza Fernandez, M., Santos, M., Rocha, R., Helena Florencio, M., Jennings, K.R. 2002. Interactions of flavonoids with iron and copper ions: A mechanism for their antioxidant activity. Free Radical Research 36(11): 1199-1208. https://doi.org/10.1080/1071576021000016463
  37. Moon, M.Y., Baik, J.S., Kim, S.S., Jang, W.J., Kim, M.S., Lee, N.H. 2009. Identification of antioxidative constituents from the branches of Quercus gilva Blume. Journal of the Society of Cosmetic Scientists of Korea 35(3): 251-256.
  38. Mun, J.S., Kim, H.C., Mun, S.P. 2020. Chemical characterization of neutral extracts prepared by treating Pinus radiata bark with sodium bicarbonate. Journal of the Korean Wood Science and Technology 48(6): 878-887. https://doi.org/10.5658/WOOD.2020.48.6.878
  39. Pinelo, M., Rubilar, M., Jerez, M., Sineiro, J., Nunez, M.J. 2005. Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. Journal of Agricultural and Food Chemistry 53(6): 2111-2117. https://doi.org/10.1021/jf0488110
  40. Shin, J.C., Jung, H.Y., Harikishore, A., Kwon, O.D., Yoon, H.S., Kim, K.T., Choi, B.H. 2013. The flavonoid myricetin reduces nocturnal melatonin levels in the blood through the inhibition of serotonin N-acetyltransferase. Biochemical and Biophysical Research Communications 440(2): 312-316. https://doi.org/10.1016/j.bbrc.2013.09.076
  41. Tvrda, E., Straka, P., Galbavy, D., Ivanic, P. 2019. Epicatechin provides antioxidant protection to bovine spermatozoa subjected to induced oxidative stress. Molecules 24(18): 3226. https://doi.org/10.3390/molecules24183226
  42. Wang, W., Yang, L., Liu, T., Wang, J., Wen, A., Ding, Y. 2020. Ellagic acid protects mice against sleep deprivation-induced memory impairment and anxiety by inhibiting TLR4 and activating Nrf2. Aging 12(11): 10457-10472. https://doi.org/10.18632/aging.103270
  43. Wang, X., Zhu, W., Cheng, X., Lu, Z., Liu, X, Wan, X., Song, C., Liu, L. 2021. The effects of circadian rhythm on catechin accumulation in tea leaves. Beverage Plant Research 1(1): 1-9.
  44. Yang, J., Choi, W.S., Kim, J.W., Lee, S.S., Park, M.J. 2019. Anti-inflammatory effect of essential oils extracted from wood of four coniferous tree species. Journal of the Korean Wood Science and Technology 47(6): 674-691. https://doi.org/10.5658/WOOD.2019.47.6.674
  45. Yang, J., Choi, W.S., Lee, S.Y., Kim, M., Park, M.J. 2022. Antioxidant activities of essential oils from Citrus × natsudaidai (Yu. Tanaka) Hayata peels at different ripening stage. Journal of the Korean Wood Science and Technology 50(4): 272-282. https://doi.org/10.5658/WOOD.2022.50.4.272
  46. Yu, L., Haley, S., Perret, J., Harris, M., Wilson, J., Qian, M. 2002. Free radical scavenging properties of wheat extracts. Journal of Agricultural and Food Chemistry 50(6): 1619-1624. https://doi.org/10.1021/jf010964p
  47. Zhishen, J., Mengcheng, T., Jianming, W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry 64(4): 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2