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PROPER BI-SLANT PSEUDO-RIEMANNIAN SUBMERSIONS
WHOSE TOTAL MANIFOLDS ARE PARA-KAEHLER
MANIFOLDS

EsrA BASARIR NOYAN AND YILMAZ GUNDUZALP*

Abstract. In this paper, bi-slant pseudo-Riemannian submersions from
para-Kaehler manifolds onto pseudo-Riemannian manifolds are introduced.
We examine some geometric properties of three types of bi-slant submer-
sions. We give non-trivial examples of such submersions. Moreover, we
obtain curvature relations between the base space, total space and the
fibers.

1. Introduction

A (C°°—submersion @ can be defined according to the following condi-
tions. A pseudo-Riemannian submersion ([7],[18],[23],[24],[36],[3]), an almost
Hermitian submersion ([43],[13],[4]), a slant submersion ([9],[12],[26],[33]), a
para quaternionic submersion ([19]), a Clairaut submersion ([15]), an anti-
invariant submersion ([14],[16],[34],[11]), anti-invariant Riemannian submersion
from cosymplectic manifolds ([17]),bi-slant submanifold ([8]), bi-slant submer
sion([39]), a quasi-bi-slant submersion ([28],[29],[30],[31]), a pointwise slant
submersion([22],[40]), a hemi-slant submersion ([41],[38]), a semi-invariant sub-
mersion ([25],[35]), a semi-slant £1- Riemannian submersions ([1],[2],[27]), etc.
As we know, Riemannian submersions were severally introduced by B. O’Neill
([24]) and A. Gray ([18]) in 1960s. In particular, by using the concept of al-
most Hermitian submersions, B. Watson ([43]) gave some differential geometric
properties among fibers, base manifolds, and total manifolds. Some interesting
results concerning para-Kaehler-like statistical submersions were obtained by
G.E. Vilcu (]42]).

In this paper, we examine some geometric properties of three types of proper
bi-slant pseudo-Riemannian submersions. Let’s list the section of our work. In
Section 2, we gather some concepts, which are needed in the following parts. In
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Section 3, we study some geometric properties of three types of proper bi-slant
pseudo-Riemannian submersions from almost para-Hermitian manifolds onto
pseudo-Riemannian manifolds. We present examples, study the geometry of
leaves of distributions. We also obtain necessary and sufficient conditions for
a proper bi- slant pseudo-Riemannian submersions to be totally geodesic map.
In the final section, we obtain curvature properties between the base space,
total space and the fibers.

2. Preliminaries

By a para-Hermitian manifold we mean a triple (B, P, gg),where B is con-
nected differentiable manifold of 2n- dimensional , P is a tensor field of type
(1,1) and a pseudo-Riemannian metric gp on B, satisfying

(1) P2E, = E1, gs(PE.,PEy) = —gp(E1, Es),

where E1, Fs are vector fields on 5. An almost para-Hermitian manifold B is
said to be a para-Kaehler manifold if

2) VP =0,

where V denotes the Riemannian connection on B ([21]).

Let (B,g5) and (B, gz) be two pseudo-Riemannian manifolds. A pseudo-
Riemannian submersion is a smooth map ¢ : B — B satisfying the following
two axioms
(i) the fibres ¥ ~(g), ¢ € B, are r— dimensional pseudo-Riemannian submani-
folds of B, where r = dim(B) — dim(B).

(ii) 1« preserves scalar products of vectors normal to fibres.

The vectors tangent to the fibres are called vertical and those normal to
the fibres are called horizontal. A vector field U on B is called basic if U
is horizontal and 7 related to a vector field U, on B, i.e., TxUp = Usy, for
all p € B. We indicate by V the vertical distribution, by H the horizontal
distribution and by v and h the vertical and horizontal projection. We know
that (B, gg) is called total manifold and (B, gg) is called base manifold of the
submersion ¢ : (B, g5) — (B, g3)-

Define O’Neill’s tensors 7 and A by:

(3) ToW = hV,poW + vV, hW
and
(4) AW = oV ,ohW + hV oW

for every U, W € x(B), on B where V is the Levi-Civita connection of gz.
It is easy to see that a pseudo-Riemannian submersion 1 : B — B has totally
geodesic fibers if and only if 7 vanishes identically. Also, if A vanishes then
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the horizontal distribution is integrable. (see [7],[10]). Using (3) and (4), we
get

(5) VoW =TyW + @UW;

(6) Vu(¢=Tu(+hVuy(;

(7) VU =AU +vVeU;

(8) Ven = Agn+ hVen,

for any ¢,n € T'(kery,)*, U, W € T'(keri,). Also, if ¢ is basic then hVy ¢ =
WV U = AU

It is easily seen that 7 is symmetric on the vertical distribution and A is
alternating on the horizontal distribution such that

(9) TwU =ToW, W,U € F(kem/)*);

(10) AyV = —AyY = %U[Y, V], Y,V €T (ker,) .

Also, it is easily seen that T¢ and Ag are skew-symmetric operators on I'(T'B)
for any £ € I'(T'B) such that

(11) 98(TwU, X) = —gs(Tw&,U),

(12) 958(AWU, X) = —gp(AwX, U).

Remark 2.1. In present paper, we assume that all horizontal vector fields
are basic vector fields.

Let ¢ : (B,g5,P) — ([5’795) be a pseudo-Riemannian submersion from an
almost para-Hermitian manifold (B, g5, P) onto a pseudo-Riemannian manifold
(B,g3). A pseudo-Riemannian submersion 4 is called a slant submersion if the
angle (W) between PW and space (keri,), is constant for non-null vector
field W € (keri.) and g € B, we can say that ¢ is a slant angle ([16]).

Let ¢ : (B, g5, P) — (B, g) is a slant submersion with the slant angle ¢. If
¢ = 0 we can say that the map v an invariant submersion [37]. Then, If ¢ = 7
we can say that the map ¢ an anti-invariant submersion [34]. In other cases,
it is called a proper slant submersions.

Let (B, gs) and (B,gg) be pseudo-Riemannian manifolds and 1 : B — B is

a differentiable map. Then the second fundamental form of v is given by
(13) (V) (X, V) = ViV — 4 (Vx V)

for X,V € T'(B). Here we indicate conveniently by V the Riemannian con-
nections of the metrics gs and gz. Recall that ¢ is said to be harmonic if
trace(Vi,) = 0 and 9 is called a totally geodesic map if (V. )(X,V) = 0 for
X,V € I(TB) ([20]). Note that V¥ is the pullback connection.
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Proposition 2.2. For every vertical vector fields X, Xy, X3, X, and for
every horizontal vector fields Y1, Y2, Y3, Vs the following Riemannian curvature
tensor R is given by ([24]).

R(X17X27X33X4) - R(X17X23X33X4) _Q(TX1X37TX2X4)
(14) + 9(Ta, X3, Tx, Xa),

(15) R(X1, X5, X3, 1) = 9(Va, T)ay X3, 1) — 9(V e, T) x, X3, Y1),

RV, Y2, Y3, X1) = g(Vy, Ay, Vo, X1) + g(Ay, Vo, Tx, V3)
(16) — 9(Ap, V3, T, 1) — 9(Ap, Vi, Ta, Vo),

R(V1,Y2, Y5, Y1) = R*"(V1,Y2,Ys, V1) — 29(Ay, Vo, Ay, Va)
(17) + 9(Ay, V3, Ay, V) + 9(Ay, Vs, Ay, Va),

RV, V2, X1, X)) = g((Va, Ay, Vo, X2) — g((Vx, A)y, Va, X1)
+ g(Ayl'leAy2X2) - g(AleQv-Aszl)
(18) — 9(Tx, V1, T, Y2) + (T Vi, Ta, Vo),

R(yth;yZaXQ) = g((vy1T)X1X27y2) +g((vX1A)y1y27X2)
(19) — 9(Ta V1, Ta, Vo) + g(Ay, &1, Ay, &Xs),

where R, R* and R are Riemannian curvature of B , B and ¥~ (¢), respectively.
Moreover, if for every vertical vector fields A;, X5 and for every horizontal
vector fields Yy, Vs are orthonormal basis of vertical 2-plane, then we obtain:

(20) K(X1, Xo) = K (X1, X2) + || Ta, X — g(Ta, X1, T, X)),

(21) KV, X1) = g(Vy, T, X1, D1) + || Ay, X1[)* = | T, 0112,

(22) K(V1,d2) = K*(V1,Ys) = 3[| Ay, Yo %,

where K, K* and K are sectional curvature of B, B and 1 ~1(q), respectively

(7D
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3. Bi-slant submersions

Let ¢ : (B,g5,P) — (B,g5) be a pseudo-Riemannian submersion from an
almost para-Hermitian manifold (B, g5, P) onto a pseudo-Riemannian manifold

(B’ gé)'
For any non-null vector field W € (kert.), we get
(23) PW = tW + nW,

where tW and nW are vertical and horizontal parts of PW.
Also, for non-null vector field ¢ € (kery,)*, we have

(24) P¢= B¢+ C¢,

where BC € keri, and CC € (keri,)*.
In addition, (keri, )" is decomposed as

(25) (ker, )t = nD? @ nD¥* @ p

where p is the orthogonal complementary distribution of nD¥* & nD¥2. We
can say that p is invariant distribution of (kert,)* with respect to P.

Definition 3.1. ([15]) Let ¢ : (B, g5, P) — (B,g5) be a proper slant sub-
mersion from an almosNt para-Hermitian manifold (B, gg,P) onto a pseudo-
Riemannian manifold (B, ggz). We have

type ~1 if for every space-like (time-like) vector field W € T'(keri,), tW is
time-like (space-like), and % >1,
type ~ 2 if for every space-like (time-like) vector field W € T'(kery,), tW is
time-like (space-like), and ‘}‘7’;‘6{,‘}‘ <1,
type ~ 3 if for every space-like (time-like) vector field W € T'(keri,), tW is

space-like (time-like).

Now, we can give our definition.

Definition 3.2. Let (B, gg,P) be an almost para-Hermitian manifold and
(B,gz) be a pseudo-Riemannian manifold. A pseudo-Riemannian submersion

v (B,gs,P) — (l’;’, gi) is known a bi-slant submersion if there are two slant
distribution D¥! € keriy, and D¥? € keri, such that

(26) keriy, = D¥* @ D%,
where D¥! and D¥? have slant angles p1 and 2, respectively.

Hence, using (23) and (24) we have:

Lemma 3.3. Let ¢ : (B,g5,P) — (B, g3) be a bi-slant submersion from an
almost para-Hermitian manifold (B, gs, P) onto a pseudo-Riemannian manifold
(B, g3)- Then, we obtain the following equations.

(a) tD¥* Cc D¥*, (b) tD¥? C D¥?, (c) Bu={0}, (d) Cu=p.

Then, we can easily see that P? = I and from (23) and (24) we get:
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Lemma 3.4. Let ¢ : (B, g5, P) — (B,gg) be a bi-slant submersion from an
almost para-Hermitian manifold (B, gg, P) onto a pseudo-Riemannian manifold
(B, gi). Then, we obtain the following equations.

(a) ?X + BnX = X, (b) C*U +nBU =1,
(c) tB+ BC ={0}, (d) nt+ Cn = {0}
for all vector field X € D% and U € D¥=.

The proof of the following Theorems are similar to the proof of ([5],[6]).
Therefore we skip its proof.

Theorem 3.5. Let ¢ : (B, g5, P) — (l’;’,gg) be a pseudo-Riemannian sub-
mersion from an almost para-Hermitian manifold (B, gs,P) onto a pseudo-
Riemannian manifold (lg’, gi)- In this case, v is proper bi-slant submersion of
type ~1 if and only if for any space-like(time-like) vector field X, Y € D' and
U,W € D¥2. Then, we have:

(a) 2X = cosh? ¢, X. (b) t2U = cosh? p,U.
(c) g5(tX,tY) = —cosh? p1g5(X,Y). (d) gs(tU,tW) = — cosh? wagi(U, W).
(e) gs(nX,nY) = sinh? p1g5(X,Y). (£f) gs(nU,nW) = sinh® @ag5(U, W).

Theorem 3.6. Let ¢ : (B, g5, P) — (B,gz) be a pseudo-Riemannian sub-
mersion from an almost para-Hermitian manifold (B, gg,P) onto a pseudo-
Riemannian manifold (lg’, g3)- In this case, v is proper bi-slant submersion of
type ~2 if and only if for any space-like(time-like) vector field X,Y € D¥* and
U, W € D¥2. Then, we have:

(a) t2X = cos? p1 X. (b) t2U = cos? poU.
(c) gg(tX,tY) = —cos? p1g5(X,Y). (d) g(tU,tW) = — cos? pag5(U, W).
(e) gs(nX,nY) = —sin® p195(X.Y). (£) gs(nU,nW) = —sin® p2g5(U, W).

Theorem 3.7. Let ¢ : (B, g5, P) — (B,gg) be a pseudo-Riemannian sub-
mersion from an almost para-Hermitian manifold (B, gs,P) onto a pseudo-
Riemannian manifold (B, gg). In this case, v is proper bi-slant submersion of
type ~3 if and only if for any space-like(time-like) vector field X, Y € D and
U,W € D¥2. Then, we have:

(a) 12X = —sinh? ¢, X. (b) t*U = —sinh? p,U.
(c) g5(tX,tY) =sinh® p195(X,Y).  (d) gs(tU,tW) = sinh® pog5(U, W).
(e) gg(nX,nY) = —cosh? p1g(X,Y). (f) gg(nU,nW) = — cosh? pag5(U, W).
Let us consider para-Kaehler structure on R2" :
0 0 0 0
— s = s :d12—d22+d32—..._d2n2.

Bum) ~ Ovars ay%l) oy ¢ (dy")"—(dy”)"+(dy”) (dy™)
Here i € {1, ...,n}. Also, (y1,y2, ..., Y2n) denotes the cartesian coordinates over
R2n,

We can easily present non-trivial examples of proper bi-slant pseudo-Riemannian
submersions of type~1, 2 and 3.
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Example 3.8. Let us determine the map v : R§ — R}
Y(y1, .-, ys) = (y2sinh B1 + y3 cosh B1, y7, ys cosh B2 + ys sinh B2, ys).

So, ¢ is a proper bi-slant pseudo-Riemannian submersion of type ~ 1. By
direct calculations, we obtain

D?t =< Y] = —coshﬁli —|—sinhﬂli,Yg = i >,
Y2 dys3 oy
D?? =< Y3 = *Sinhﬂgi + coshﬂgi,YZ; = i >
Oya Oys dys
with bi-slant angles 31 and (5.
Let Rj be a pseudo-Euclidean space of signature (+,+, —, —) with respect
to the canonical basis (8%1’ ey %).

Example 3.9. Let us determine the map v : R§ — R}

s, Vs
\/5 b b 2 b

So, 1 is a proper bi-slant pseudo-Riemannian submersion of type ~ 2. By
direct calculations, we obtain

¢(y17 ~~7y8)

1 0 0 0
D =<YVi= (s 4 2—) Vo= >,
! ﬂ(a% Ays” "2 By
1 0 0 0
D¥* =<YV3=-(V3—+ —),Ya=— >
’ 2( ys 8y7) 4 e

with bi-slant angles 1 = 7 and @2 = 7.

Example 3.10. Let us determine the map 1 : R§ — R}
Y(Y1, .-, ys) = (y2 cosh B1 + ys sinh B1, ya, ys cosh B2 + ys sinh B, y7).

So, ¢ is a proper bi-slant pseudo-Riemannian submersion of type ~ 3. By
direct calculations, we obtain

0 0 0

D¢ =< Y] =sinhf;— —coshf1—,Ys = — >,
' o Y2 A dys’ P oy

D?? =< Y3 = sinhﬁzi — coshﬁgi,n = 9 >
3?;5 83/8 6y6

with bi-slant angles 31 and (5.
Let Rj be a pseudo-Euclidean space of signature (—, —, +,+) with respect

to the canonical basis (8%1, . %)

Using equations (1), (5)~(8) and (23)~(24), we get:
Lemma 3.11. Let ¢ : (B,g5,P) — (B, g3) be a pseudo-Riemannian sub-

mersion of type ~1, 2, 3 from a para-Kaehler manifold (B, gs, P) onto a pseudo-
Riemannian manifold (B, gz). So, we obtain the following equations.

(27) VutW + TonW =tV W + BTy W,
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(28) TotW + HVynW = nVyW +CTyW,
(29) VY + AxCY = tAxY + BHV 1Y,
(30) AxBY + HVACY = nAxY +CHV 1Y,
(31) VuBX + TyCX = tTyX + BHVy X,
(32) TuBX + HVyCX = nTuX + CHVy X

for any non-null vector fields U,W € T'(keri,) and X,Y € T'(keriy,)*.
Now we can show

(Vut)W = VytW —tVyW
(Vun)W = HVynW —nVyW,
(VuB)¢ = VuyB¢ — BHVy(,

(VuC)( =HVyC(— CHV (¢

for any non-null vector fields U, W € keriy, and ¢ € (keri.)". Then, we can
say that

t is parallel <— Vt =0.

n is parallel < Vn =0.
B is parallel «<— VB =0.
C is parallel <— VC =0.

Now, the equations we get below will help us in integrability, totally, and
mixed geodesic for bi-slant submersions.

Lemma 3.12. Let ¢ : (B,g5,P) — (B,g;) be a pseudo-Riemannian sub-
mersion from a para-Kaehler manifold (B, gg,P) onto a pseudo-Riemannian
manifold (B, gp)- If v is a bi-slant submersion of type ~1, then, for any non-
null vector fields U,W € T'(D¥!) and X,y € I'(D¥?), we obtain;

(33) g(VuW, x)=(1+ cosh? ©1)g(TantW — TeanW — ApxnW,U),

(34)  g(VaY,U) = (1 + cosh® p2)g(Tonty — Tiond — Apund, X).

If ¢ is a bi- slant submersion of type ~2, then, for any non-null vector fields
UW eT(D¥!) and X,y € I'(D¥?), we obtain;

(35) g(VuW, X) = (1 4 cos? 1) g(TantW — TianW — ApxnW,U),

(36) g(VxY,U)=(1+ cos? w2)g(TuntYy — Tewnd — Appnd, X).

If ¢ is a bi-slant submersion of type ~3, then, for any non-null vector fields
UW eT(D¥%") and X,Y € T'(D¥2), we obtain;

(37) g(VuW, &) = (1 —sinh® ) g(TantW — ToanW — ApxnW,U),
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(38) gV, U)=(1- sinh? w2)g(TuntYy — Tewnd — Apgnd, X).

Proof. For any non-null vector fields U, W € I'(D¥?) and X,) € I'(D¥?).
Then, from (1), (2) and (23), we get

g(VuW,x) = g(VyPW,PX)
g(VutW,PX) + g(VynW, PX).
From (1) and (23), we get
g(VuW, X) = —g(Vut?W,X) — g(VyntW, X)
+ g(VunWtX) + g(VynW,nX).
Using Theorem 3.5-(a), (5), and (6), we get
g(VuW,X) = —cosh? p1g(VuW, X) — g(TontW, X)
+  9(TunW,tX) + g(AunW,nX).

Therefore, with the help of (11) and (12), we obtain (33). Similarly, (34) is
obtained. O]

Moreover, the equations of type ~2 and type ~3 were obtained in a similar
way.

Theorem 3.13. Let ¢ : (B, g5, P) — (é, gg) be a proper bi-slant pseudo-
Riemannian submersion of type ~1 from an almost para-Kaehler manifold
(B, gB,P) onto a pseudo-Riemannian manifold (g,gg), The slant distribution
D¥1 js integrable if and only if

g(TanmtW — TeanW — ApanW,U) = g(TantU — TeanU — ApxnU, W)
for any non-null vector fields U,W € I'(D¥?) and X € I'(D¥2).

Proof. For any non-null vector fields U,W € T'(D¥!) and X € T'(D¥?),
using (33), we get:

g([UW],X) = g(VuW,X) —g(VwU,X)
= (1 + cosh® o)) {g(TantW — TixnW — ApxnW,U)
g(TantU — TanU — ApaxnlU, W)}
So the proof is complete. O

Similarly, the following conclusion is obtained.

Theorem 3.14. Let ¢ : (B, g5, P) — (B, gp) be a proper bi-slant pseudo-
Riemannian submersion of type ~1 from an almost para-Kaehler manifold
(B, g5, P) onto a pseudo-Riemannian manifold (B, gg). The slant distribution
D¥=2 js integrable if and only if

9(Tonty — Tawnd — Anund, X) = g(TuntX — Tiwn& — ApundX, V)

for any non-null vector fields X,y € D¥' and U € D¥2.
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Now, let us investigate the cases where the fibres, vertical and horizontal
distribution are totally geodesic.

Theorem 3.15. Let v : (B, gz, P) — (B, gi) be a proper bi-slant pseudo-
Riemannian submersion of type ~1 from a para-Kaehler manifold (B, g5, P)
onto a pseudo-Riemannian manifold (B, gg). In this case, the slant distribution
D% describes a totally geodesic foliation on (keri,) if and only if
(39) g(TantW — TeanW — ApxnW U) =0
for any non-null vector fields U, W € D¥' and X € D¥2.

Proof. For any non-null vector fields U, W € D¥! and X € D®¥2. Using (5)
and (33) we get:

g(VuW, X) = g(VuW,X)
(1+ cosh? ©1)g(TantW — TeanW — ApxnW,U).
Since the slant distribution D¥* describes a totally geodesic foliation on (keri.),
we show that VyW € D¥1, O

Note that the Theorem 3.15 is valid for proper bi-slant pseudo-Riemannian
submersion of type ~2.

Similarly, the following conclusion is obtained.

Theorem 3.16. Let v : (B, gz, P) — (B, gi) be a proper bi-slant pseudo-
Riemannian submersion of type ~1 from a para-Kaehler manifold (B, g, P)
onto a pseudo-Riemannian manifold (5’7 93)- In this case, the slant distribution
D¥2 describes a totally geodesic foliation on (keri,) if and only if

(40) 9(TxntW — TeanW — ApanW,U) =0
for any non-null vector fields X € D¥* and U,W € D¥2.

Note that the Theorem 3.16 is valid for proper bi-slant pseudo-Riemannian
submersion of type ~2.

Proposition 3.17. Assume that ¢ : (B, gz, P) — (B, gi) be a proper bi-
slant pseudo-Riemannian submersion of type ~1 ,2 or 3 from a para-Kaehler
manifold (B, g, P) onto a pseudo-Riemannian manifold (B, g5)- In this case,
(keri,) is a locally product Bpe: X Bpe: if and only if the equations (39) and
(40) are hold where Bpe; and Bpe«. integral manifolds of the distributions D%
and D%, respectively.

Theorem 3.18. Let v : (B, gz, P) — (B, gi) be a proper bi-slant pseudo-
Riemannian submersion of type ~1 ,2 or 3 from a para-Kaehler manifold
(B, g5, P) onto a pseudo-Riemannian manifold (B, gz). In this case, (keri,)
describes a totally geodesic foliation on if and only if
(41) Cy(TutW + hVynW) + n(VutW + TynW) =0

for any non-null vector fields U, W € (keri,).
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Proof. For any non-null vector fields U, W € (keriy,). Using (1), (5), (6),
(23) and (24), we get

VuW = PVyPW = P(VytW + VynW)
= P(TutW + VutW + TynW + hVynW)
= BTutW + CTutW + tVutW + nVytW
+ tTynW + nTynW + BN ynW + ChVynW.

O

Theorem 3.19. Let v : (B, gz, P) — (B, gp) be a proper bi-slant pseudo-
Riemannian submersion of type ~1 ,2 or 3 from a para-Kaehler manifold
(B, g5, P) onto a pseudo-Riemannian manifold (B,gg). In this case, (keryi)
describes a totally geodesic foliation on if and only if

(42) Bg(AXBJJ + hVXCy) + t(.Ach + ’UVXBJ)) =0
for any non-null vector fields X, € (keriy).

Proposition 3.20. Assume that v : (B, gz, P) — (B, gg) be a proper bi-
slant pseudo-Riemannian submersion of type ~1 ,2 or 3 from a para-Kaehler
manifold (B, g5, P) onto a pseudo-Riemannian manifold (B, g3)- In this case,
(keri.) is a locally product Byery, X Byery1 if and only if the equations (41) and
(42) hold, where Byery, and By, 1 are integral manifolds of the distributions
(keri,) and (keri, )", respectively.

4. Curvature Relations

We now investigate the curvature relations between the base space, total
space and the fibers of proper bi-slant pseudo-Riemannian submersions.

Let ¢ : (B, g5, P) — (B, gi) be a proper bi-slant pseudo-Riemannian sub-
mersion from a para-Kaehler manifold (B, gs,P) onto a pseudo-Riemannian
manifold (l’;;, g5). We first recall that the sectional curvature K is described by
the following;

RU,W,W,U)

43 KUW)= 220
) = e W)
for all pair of nonzero orthogonal vectors U, W [24].

Theorem 4.1. Let v : (B, g5, P) — (B, gg) be a proper bi-slant pseudo-
Riemannian submersion of type ~1 or 2 from a para-Kaehler manifold (B, g, P)
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onto a pseudo-Riemannian manifold (B, 93)- Then, we get
K(X1,X,) = K&, t2)|[t20]| 72 [[t2]| 7% + K* (0, ndy)|[ndy || 72 [ndy||
= 9(Toa, tX0, Toa, tXo) + || Toa, t o[> = 3] A, n o ||
+ g(( nXs )tXlt‘lenXQ) + HAHX2tX1H2 - ||7;X1nX2||2
(

(44) + 9(Via, T)eaytXo, nXy) + || Ana, tXo|* — || Tea,n |,
K(X1, Y1) = K(tXy, BW)|[tx1|| 2BV 72 + K* (nXy, CV1)|InXa||~2||CY |2
9(Tex, tX1, Toy, BY1) + || Tex, BV = 3]| Anx, CY1 ||
+ g((vcyl )tXlt'lecyl) + ||Acy1t‘)(1||2 - ||7;chy1||2
(45)  + 9((Vaa,T)y, BY1,n&1) + || Apa, BV|I” — || Ty, ni |,

Tey, BY1, Toy, BY2) + || Tay, BV = 3[|Acy, CY2||?
+ 9((Voy, T) ey, BY1, OV2) + || Acy, BYi||* = [Ty, CY2||?
(46) + 9((Vey, T)py, BY2, C1) + [ Acy, B|” — || Toy, O 1%
Proof. For every vertical vector fields X1, X5 and for every horizontal vector
fields V1, V> which are orthonormal vector fields, we have
K(Xy, Xy) = K(tX,tXs) + K (X1, nXs) + K(nXy, tXs) + K(nXy, nXy).
By using (14), (17) and (19), we get
K(X1,Xy) = R(tX,tXo, tXo, tX)) — g(Tea tX0, TraytXa) + || Tiae, t Ao 2
+ g(Var, Teay tX1, ) + || Anae, tX1 [[* — || Toa, no |2
+ 9(Vaa, T)eaey tXo, n&0) + || Apa to][* = || T, na [
+  R*(nXp,nXs, nXa,nX)) — 3|| A, nds||?.

KV, Y2) = K(BY1, BY2)|[BYi||7%|BYal| 72 + K*(CY1, CW)||CVLI| 2OV~
- o(
9(

Using the following equations,
R(tX), 12X, t Xy, 1 X)) = K (tX1, )| [t || 72|t Xa|| 2

and
R*(nXy,nXs, nXs, nX)) = K*(nXy,nXy)||nXy || 2 |ntXs|| 2.

we get (44) easily. Similarly, (45) and (46) can be obtained. O
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