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LAZHAR TYPE INEQUALITIES FOR p-CONVEX

FUNCTIONS

Tekin Toplu, İmdat İşcan∗, and Selahattin Maden

Abstract. The aim of this study is to establish some new Jensen and

Lazhar type inequalities for p-convex function that is a generalization of

convex and harmonic convex functions. The results obtained here are
reduced to the results obtained earlier in the literature for convex and

harmonic convex functions in special cases.

1. Introduction

Definition 1.1. The function f : I ⊂ R → R, is said to be convex, if the
following inequality holds

f (tx+ (1− t) y) ≤ tf (x) + (1− t) f (y)

for all x, y ∈ I and t ∈ [0, 1]. We say f is concave if (−f) is convex.

Our next theorem is Discrete Jensen’s inequality for convex functions [6].

Theorem 1.2. Let f be a convex function defined on a interval I. If
x1, x2 · · · , xn ∈ I and λ1, λ2 · · ·λn ≥ 0 with

∑n
i=1 λi = 1,then

(1) f

(
n∑

i=1

λixi

)
≤

n∑
i=1

λif (xi)

In [7], Popoviciu gave the following theorem.

Theorem 1.3. Let f be a real-valued continuous function on an interval
I. Then f is convex if and only if

f (x1) + f (x2) + f (x3)

3
+ f

(
x1 + x2 + x3

3

)
≥ 2

3

[
f

(
x1 + x2

2

)
+ f

(
x2 + x3

2

)
+ f

(
x3 + x1

2

)]
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In [2], Lazhar Bougoffa gave a generalization of a variant the Popoviciu’s
inequality as follows.

Theorem 1.4. If f is a convex function and x1, x2, · · · , xn lie in its domain,
then

n∑
i=1

f (xi)− f

(
x1 + x2 + · · ·+ xn

n

)
≥ n− 1

n

[
f

(
x1 + x2

2

)
+ · · ·+ f

(
xn−1 + xn

2

)
+ f

(
xn + x1

2

)]
In [2] Bougoffa also gave a variant of generalized Popoviciu inequality as

follows.

Theorem 1.5. If f is a convex function and x1, x2, · · · , xn lie in its domain,
then

(n− 1) [f (b1) + f (b2) · · ·+ f (bn)] ≤ n [f (a1) + · · ·+ f (an)− f (a)] ,(2)

where a = a1+···+an

n and bi =
na−ai

n−1 , i = 1, · · · , n.

In [4], İşcan gave definition of harmonically convexity as follows.

Definition 1.6. Let I ⊂ R\{0} be a real interval. A function f : I → R is
said to be harmonically convex, if

f

(
xy

tx+ (1− t)y

)
≤ tf (y) + (1− t) f (x)

for all x, y ∈ I and t ∈ [0, 1].

Dragomir [3] proved the following Jensen type inequality (discrete version)
for harmonically convex functions:

Theorem 1.7. If f : [a, b] ⊂ (0,+∞) → R is harmonically convex function,
then

(3) f

(
1∑n

i=1
ti
xi

)
≤

n∑
i=1

tif (xi)

for all x1, · · · , xn ∈ [a, b],t1 · · · , tn ≥ 0 with t1 + · · ·+ tn = 1

In [1], Azócar et al gave Lazhar type inequalities for harmonic convex func-
tion.

Theorem 1.8. f : [a, b] ⊆ (0,+∞) → R is a harmonically convex function
and x1, x2 · · ·xn ∈ [a, b],then

n

n− 1

[
n∑

i=1

f (xi)− f

(
n∑n

i=1
1
xi

)]

≥ f

(
2x1x2

x1 + x2

)
+ · · ·+ f

(
2xn−1xn

xn−1 + xn

)
+ f

(
2xnx1

xn + x1

)
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In [1], Azócar et al proved inequality for harmonically convex functions as
following theorem.

Theorem 1.9. If f : [a, b] ⊆ (0,∞) → R is a harmonically convex function
and a1, · · · , an ∈ [a, b],then

n∑
i=1

f (bi) ≤
n

n− 1

[
n∑

i=1

f (ai)− f

(
n∑n

i=1
1
ai

)]
,

where bi =
n−1

nα−1−a−1
i

, i = 1, , 2, ..., n and α = n
a−1
1 +a−1

2 +...+a−1
n

.

In [8], Zhang and Wan gave definition of p-convex function as follows.

Definition 1.10. Let I be a p-convex set. A function f : I → R is said to
be a p-convex function or belongs to class PC (I) , if

f
(
[txp + (1− t)yp]

1
p

)
≤ tf (x) + (1− t) f (y)

for all x, y ∈ I and t ∈ [0, 1] .

Remark 1.11. [8]An interval I is said to be a p-convex set if [txp + (1− t)yp]
1
p ∈

I for all for all x, y ∈ I and t ∈ [0, 1] ,where p = 2k+1 or p = n/m, n = 2r+1,
m = 2s+ 1 and k, r, s ∈ N.

Remark 1.12. [5] If I ⊂ (0,∞) be a real interval and p ∈ R\{0}, then
[txp + (1− t)yp]

1
p ∈ I for all for all x, y ∈ I and t ∈ [0, 1] .

According to Remark 1.12, we can give different version of the definition of
p-convex function as below.

Definition 1.13. [5] Let I ⊂ (0,∞) be a real interval and p ∈ R\{0}. A
function f : I → R is said to be p-convex function, if

(4) f
(
[txp + (1− t)yp]

1
p

)
≤ tf (x) + (1− t) f (y)

for all x, y ∈ I and t ∈ [0, 1] . If the inequality is reserved, then f is said to
be p-concave.

According to definition above, it can easily be seen that p-convexity reduces
to ordinary convexity and harmonically convexity of functions defined on I ⊂
(0,∞) for p = 1 and p = −1, respectively. In [5] İşcan gave the relation between
convex function and p-convex function as follows

Proposition 1.14. Let f : I ⊂ (0,∞) → R and h(x) = xp for p ∈ R\ {0}.
If we consider g : J = h(I) → R defined as g(t) =

(
f ◦ h−1

)
then, if f is

p-convex on I, if and only if g is convex on J .

The aim of this study is to establish some new Jensen and Lazhar type
inequalities for p-convex functions that are generalizations of results obtained
inTheorem 1.2, Theorem 1.4 and Theorem 1.5 for convex functions and ob-
tained in Theorem 1.7, Theorem 1.8 and Theorem 1.9 for harmonic convex
functions.
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2. Main Results

In this section, we present some new lazhar type inequalities for p-convex
functions. For these, firstly we prove the following Jensen inequality for p-
convex functions.

Theorem 2.1. Let p ∈ R\{0}, n ∈ N and f : I ⊂ (0,∞) → R be a
p-convex function. If x1, x2 · · · , xn ∈ I, then

(5) f

[ n∑
i=1

tix
p
i

] 1
p

 ≤
n∑

i=1

tif(xi)

where t1, t2, t3 . . . , tn ≥ 0, t1 + t2 + t3 + · · ·+ tn = 1.

Proof. It can easily be seen by induction. For;
i) n = 1, it is obvious that t = 1 also and inequality holds;

f
(
[txp]

1
p

)
≤ tf (x)(6)

ii) For n we assume inequality holds

f

[ n∑
i=1

tix
p
i

] 1
p

 ≤
n∑

i=1

tif(xi)(7)

iii) Now we show for i = n+ 1.

Let
∑n+1

i=1 ti = 1 for ti ≥ 0. Now we take α =
∑n

i ti Firstly we will prove for
α ̸= 0

f

[n+1∑
i=1

tix
p
i

] 1
p

 = f


α
[ n∑

i=1

ti
α
xp
i

] 1
p

p

+ tn+1x
p
n+1


1
p


≤ αf

[ n∑
i=1

ti
α
xp
i

] 1
p

+ tn+1f (xn+1)

≤ α

n∑
i=1

ti
α
f (xi) + tn+1f (xn+1) =

n+1∑
i=1

f (xi)

Secondly for α = 0 the proof is obvious.

f (xn+1) =

n+1∑
i=1

tif (xi)(8)

Thus we have desired inequality. This completes the proof.

Remark 2.2. We can give alternative proof for (5) inequality by using
Proposition 1.14. Let f : I ⊂ (0,∞) → R and x1, x2, · · · , xn ∈ I. Then
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h(x1), h(x2) · · · , h(xn) ∈ J where h(xi) = xp
i for i ≥ 1, 2, · · · , n. Since

(
f ◦ h−1

)
is convex function on J , with respect to Theorem 1.2, then we have

(9)
(
f ◦ h−1

)( n∑
i=1

λih(xi)

)
≤

n∑
i=1

λi

(
f ◦ h−1

)
(h(xi))

where λ1, λ2, · · · , λn ≥ 0 with
∑n

i=1 λi = 1. Since h(x) = xp, from the inequal-
ity (9), we obtain,

f

( n∑
i=1

λix
p
i

) 1
p

 ≤
n∑

i=1

λif(xi)

Remark 2.3. In (5) inequality, if we choose specially p = 1, it is obvious
that inequality reduces to (1) inequality.

Remark 2.4. In (5) inequality, if we choose specially p = −1, in this case
inequality reduces to (3) inequality.

Now we will give Lazhard type inequalities for p-convex functions.

Theorem 2.5. Let p ∈ R\{0}, n ∈ N and f : I ⊂ (0,∞) → R be a
p-convex function. If x1, x2, · · · , xn ∈ I then

n∑
i=1

f (xi)− f

[ n∑
i=1

xp
i

n

] 1
p

(10)

≥ n− 1

n

[
f

([
xp
1 + xp

2

2

] 1
p

)
+ f

([
xp
2 + xp

3

2

] 1
p

)
+ · · ·+ f

([
xp
n + xp

1

2

] 1
p

)]
.

Proof. Since f is p-convex, we have

f

([
x1

p + x2
p

2

] 1
p

)
+ f

([
x2

p + x3
p

2

] 1
p

)
+ · · ·+ f

([
xn

p + x1
p

2

] 1
p

)
≤ f (x1) + f (x2) + . . .+ f (xn)

hence, by Jensen inequality for p-convex functions we get

f (x1) + f (x2) + ..+ f (xn) =

n∑
i=1

f (xi) =
n

n− 1

n∑
i=1

f (xi)−
1

n− 1

n∑
i=1

f (xi)

=
n

n− 1

[
n∑

i=1

f (xi)−
n∑

i=1

1

n
f (xi)

]

≤ n

n− 1

 n∑
i=1

f (xi)− f

[ n∑
i=1

xp
i

n

] 1
p

 .

Thus we have desired inequality. This completes the proof.
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Remark 2.6. An alternative proof for Theorem 10 can be given by us-
ing Proposition 1.14. Let f : I ⊂ (0,∞) → R and x1, x2, · · · , xn ∈ I.
Then h(x1), h(x2) · · · , h(xn) ∈ J where h(xi) = xp

i for i ≥ 1, 2, · · · , n. Since(
f ◦ h−1

)
is convex function on J ,with respect to Theorem 1.4, then we have,

n∑
i=1

(
f ◦ h−1

)
(h (xi))−

(
f ◦ h−1

)( 1

n

n∑
i=1

h (xi)

)

≥ n− 1

n

[
f ◦ h−1

(
h (x1) + h (x2)

2

)
+ · · ·+ f ◦ h−1

(
h (xn) + h (x1)

2

)]
Since h(x) = xp

n∑
i=1

f (xi)− f

[ n∑
i=1

xp
i

n

] 1
p


≥ n− 1

n

[
f

([
xp
1 + xp

2

2

] 1
p

)
+ f

([
xp
2 + xp

3

2

] 1
p

)
+ · · ·+ f

([
xp
n + xp

1

2

] 1
p

)]

Remark 2.7. In (10) inequality, if we choose specially p = 1, inequality
reduces to (1.4) inequality.

Remark 2.8. In (10) inequality, if we choose specially p = −1, inequality
reduces to (1.8) inequality.

Theorem 2.9. Let p ∈ R\{0}, n ∈ N\ {1} and f : I ⊂ (0,∞) → R be a
p-convex function. If a1, a2, · · · , an ∈ I, then

(n− 1) [f (b1) + f (b2) + ...+ f (bn)](11)

≤ n

f (a1) + f (a2) + ...+ f (an)− f

[ n∑
i=1

api
n

] 1
p

 ,

where a =
[
a1

p+a2
p+...+an

p

n

] 1
p

and bi =
[
nap−ai

p

n−1

] 1
p

.

Proof. By using Jensen inequality for p-convex functions and p-convexity of
f ,

f (b1) + f (b2) + · · ·+ f (bn)

≤ f (a1) + f (a2) + · · ·+ f (an) =

n∑
i=1

f (an)
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and
n∑

i=1

f (an) =
n

n− 1
[f (a1) + f (a2) + ...+ f (an)]

− 1

n− 1
[f (a1) + f (a2) + ...+ f (an)]

=
n

n− 1
[f (a1) + f (a2) + ...+ f (an)]

− n

n− 1

[
1

n
f (a1) +

1

n
f (a2) + ...+

1

n
f (an)

]

≤ n

n− 1

f (a1) + f (a2) + ...+ f (an)− f

[ n∑
i=1

api
n

] 1
p


Thus we have desired inequality. This completes the proof.

Remark 2.10. We can also give an alternative proof for Theorem 11, by
using Proposition 1.14. Let f : I ⊂ (0,∞) → R and x1, x2, · · · , xn ∈ I.
Then h(x1), h(x2) · · · , h(xn) ∈ J where h(xi) = xp

i for i ≥ 1, 2, · · · , n. Since(
f ◦ h−1

)
is convex function on J , with respect to Theorem 1.5, then we have,

(n− 1)
[
f ◦ h−1 (b1) + f ◦ h−1

(
b2 + · · ·+ f ◦ h−1 (bn)

)]
≤ n

[
f ◦ h−1 (h (a1)) + f ◦ h−1 (h (a2)) + · · ·+ f ◦ h−1 (h (an))− f ◦ h−1h (a)

]
where bpi = nh(a)−h(ai)

n−1 and h(a) = h(a1)+h(a2)+···+h(an)
n , since f ◦h−1 is convex

on J , then

(n− 1) [f (b1) + f (b2) + ...+ f (bn)]

≤ n

f (a1) + f (a2) + ...+ f (an)− f

[ n∑
i=1

api
n

] 1
p


Remark 2.11. In (11) inequality, if we choose specially p = 1, inequality

reduces to (1.5) inequality.

Remark 2.12. In (11) inequality, if we choose specially p = −1, inequality
reduces to (1.9) inequality.

3. Some applications for special means

Let n ∈ N and α = (α1, α2, ..., αn) , αi ≥ 0,
∑n

i=1 αi = 1. Let us recall the
following special means of numbers a = (a1, a2, ..., an) , ai ≥ 0, i = 1, 2, ..., n :

1. The weighted arithmetic mean

A (a;α) :=

n∑
i=1

αiai.
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2. The weighted harmonic mean

H (a;α) :=

(
n∑

i=1

αia
−1
i

)−1

, ai > 0.

3. The weighted mean power of order p

Mp (a;α) :=

(
n∑

i=1

αia
p
i

)1/p

, ai > 0, p ∈ R\ {0} .

It should be emphasized that

H (a;α) = M−1 (a;α) ≤ M1 (a;α) = A (a;α)

and Mp (a;α) ≤ Mq (a;α) for p ≤ q.

Proposition 3.1. Let 0 < p ≤ q, n ∈ N with x1, x2 · · · , xn ∈ (0,∞) and
t1, t2, t3 . . . , tn ≥ 0,

∑n
i=1 ti = 1. Then, we have the following inequality:

Mp (x; t) =

[
n∑

i=1

tix
p
i

] 1
p

≤

[
n∑

i=1

tix
q
i

] 1
q

= Mq (x; t) ,

where t = (t1, t2, t3 . . . , tn), x = (x1, x2, . . . , xn) .

Proof. The assertion follows from inequality (5), for f : (0,∞)→ R, f(x) =
xq.

If we take p = 1 in the above proposition, we get the following result.

Corollary 3.2. Let 1 ≤ q, n ∈ N with x1, x2 · · · , xn ∈ (0,∞) and t1, t2, t3 . . . , tn ≥
0,
∑n

i=1 ti = 1. Then, we have the following inequality:

A (x; t) ≤ Mq (x; t) ,

where t = (t1, t2, t3 . . . , tn), x = (x1, x2, . . . , xn) .

Proposition 3.3. Let p < 0, n ∈ N with x1, x2 · · · , xn ∈ (0,∞) and
t1, t2, t3 . . . , tn ≥ 0,

∑n
i=1 ti = 1. Then, we have the following inequality:

H (x; t) ≤ Mp (x; t) ,

where t = (t1, t2, t3 . . . , tn), x = (x1, x2, . . . , xn) .

Proof. The assertion follows from inequality (5), for f : (0,∞)→ R, f(x) =
−x−1.

Proposition 3.4. Let 0 < p ≤ q, n ∈ N with x1, x2 · · · , xn ∈ (0,∞).
Then, we have the following inequality:

nMq
q (x; tn)−Mq

p (x; tn)

≥ n− 1

n

[
Mq

p

(
(x1, x2) ;

1

2

)
+Mq

p

(
(x2, x3) ;

1

2

)
+ · · ·+Mq

p

(
(xn, x1) ;

1

2

)]
,

where tn = ( 1n ,
1
n , . . . ,

1
n ), x = (x1, x2, . . . , xn) .
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Proof. The assertion follows from inequality (10), for f : (0,∞)→ R, f(x) =
xq.

If we take p = 1 in the above proposition, we get the following result.

Corollary 3.5. Let 1 ≤ q, n ∈ N with x1, x2 · · · , xn ∈ (0,∞). Then, we
have the following inequality:

nMq
q (x; tn)−Aq (x; tn)

≥ n− 1

n

[
Aq

(
(x1, x2) ;

1

2

)
+Aq

(
(x2, x3) ;

1

2

)
+ · · ·+Aq

(
(xn, x1) ;

1

2

)]
,

where tn = ( 1n ,
1
n , . . . ,

1
n ), x = (x1, x2, . . . , xn) .

Proposition 3.6. Let p < 0, n ∈ N with x1, x2 · · · , xn ∈ (0,∞). Then, we
have the following inequality:

nH−1 (x; tn)−M−1
p (x; tn)

≤ n− 1

n

[
M−1

p

(
(x1, x2) ;

1

2

)
+M−1

p

(
(x2, x3) ;

1

2

)
+ · · ·+M−1

p

(
(xn, x1) ;

1

2

)]
,

where tn = ( 1n ,
1
n , . . . ,

1
n ), x = (x1, x2, . . . , xn) .

Proof. The assertion follows from inequality (10), for f : (0,∞)→ R, f(x) =
−x−1.

Proposition 3.7. Let 0 < p ≤ q, n ∈ N\ {1} with a1, a2, · · · , an ∈ (0,∞)
then

(n− 1)Mq (b; tn) ≤ nMq
q (a; tn)−Mq

p (a; tn) ,

where a = (a1, a2, . . . , an) , tn = ( 1n ,
1
n , . . . ,

1
n ), a = Mp (a; tn), bi =

[
nap−ai

p

n−1

] 1
p

and b = (b1, b2, . . . , bn) .

Proof. The assertion follows from inequality (11), for f : (0,∞)→ R, f(x) =
xq.

If we take p = 1 in the above proposition, we get the following result.

Corollary 3.8. Let 1 ≤ q, n ∈ N\ {1} with a1, a2, · · · , an ∈ (0,∞) then

(n− 1)Mq (b; tn) ≤ nMq
q (a; tn)−Aq (a; tn) ,

where a = (a1, a2, . . . , an) , tn = ( 1n ,
1
n , . . . ,

1
n ), a = A (a; tn), bi =

[
nap−ai

p

n−1

] 1
p

and b = (b1, b2, . . . , bn) .

Proposition 3.9. Let p < 0, n ∈ N\ {1} with a1, a2, · · · , an ∈ (0,∞) then

(n− 1)H (b; tn) ≥ M−1
p (a; tn)− nH−1 (a; tn) ,

where a = (a1, a2, . . . , an) , tn = ( 1n ,
1
n , . . . ,

1
n ), a = Mp (a; tn), bi =

[
nap−ai

p

n−1

] 1
p

and b = (b1, b2, . . . , bn) .
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Proof. The assertion follows from inequality (11), for f : (0,∞)→ R, f(x) =
−x−1.
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İmdat İşcan
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