DOI QR코드

DOI QR Code

Preliminary Mechanistic Study on the Trachea Smooth Muscle Relaxant Activity of Aqueous Leaf Extract of Tridax Procumbens in Male Wistar Rats

  • Received : 2020.09.19
  • Accepted : 2022.07.27
  • Published : 2022.09.30

Abstract

Objectives: Aqueous leaf extract of Tridax procumbens (ALETP) has potent relaxant activity. However, this relaxant activity in respiratory smooth muscle remains uninvestigated. This study investigates the effect of ALETP on the contractile activity of tracheal smooth muscle (TSM) in adult male Wistar rats. Methods: Twelve male Wistar rats divided into 2 groups and were treated with either 100 mg/kg of ALETP (ALETP treatment group) or vehicle (distilled water; control group) through oral gavage for 4 weeks. Dose responses of TSM from the 2 groups to acetylcholine (10-9 to 10-5 M), phenylephrine (10-9 to 10-5 M), and potassium chloride (KCl; 10-9 to 10-4 M) were determined cumulatively. Furthermore, cumulative dose responses to acetylcholine (10-9 to 10-5 M) after pre-incubation of TSM with atropine (10-5 M), L-NAME (10-4 M), indomethacin (10-4 M), and nifedipine (10-4 M), were determined. Results: Treatment with ALETP substantially inhibited TSM contraction stimulated by cumulative doses of acetylcholine, phenylephrine, and KCl. Furthermore, preincubation of TSM from the 2 groups in atropine significantly inhibited contractility in TSM. Incubation in L-NAME and indomethacin also significantly inhibited contractility in TSM of ALETP-treated rats compared to that of controls. Contractile activity of the TSM was also inhibited significantly with incubation in nifedipine in ALETP-treated rats. Conclusion: ALETP enhanced relaxant activity in rat TSM primarily by blocking the L-type calcium channel and promoting endothelial nitric oxide release. ALETP contains agents that may be useful in disorders of the respiratory tract.

Keywords

References

  1. Yuan H, Ma Q, Ye L, Piao G. The traditional medicine and modern medicine from natural products. Molecules. 2016;21(5):559. https://doi.org/10.3390/molecules21050559
  2. Oyebode O, Kandala NB, Chilton PJ, Lilford RJ. Use of traditional medicine in middle-income countries: a WHO-SAGE study. Health Policy Plan. 2016;31(8):984-91. https://doi.org/10.1093/heapol/czw022
  3. Salahdeen HM, Idowu GO, Yemitan OK, Murtala BA, Alada AR. Calcium-dependent mechanisms mediate the vasorelaxant effects of Tridax procumbens (Lin) aqueous leaf extract in rat aortic ring. J Basic Clin Physiol Pharmacol. 2014;25(2):161-6.
  4. Salahdeen HM, Adebari AO, Murtala BA, Alada AR. Potassium channels and prostacyclin contribute to vasorelaxant activities of Tridax procumbens crude aqueous leaf extract in rat superior mesenteric arteries. Afr J Med Med Sci. 2015;44(1):5-19.
  5. Salami SA, Salahdeen HM, Ugbebor EC, Murtala BA, Raji Y. Effects of aqueous leaf extract of Tridax procumbens on contractile activity of corpus cavernosum in N-nitro-l-arginine methyl ester-induced hypertensive male rats. J Integr Med. 2018;16(1):51-6. https://doi.org/10.1016/j.joim.2017.11.001
  6. Beck S, Mathison H, Todorov T, Calderon-Juarez EA, Kopp OR. A review of medicinal uses and pharmacological activities of Tridax Procumbens (L.). J Plant Stud. 2018;7(1):19-35. https://doi.org/10.5539/jps.v7n1p19
  7. Cukic V, Lovre V, Dragisic D, Ustamujic A. Asthma and chronic obstructive pulmonary disease (COPD) - differences and similarities. Mater Sociomed. 2012;24(2):100-5. https://doi.org/10.5455/msm.2012.24.100-105
  8. Forum of International Respiratory Societies. The global impact of respiratory disease. 2nd ed. Sheffield: European Respiratory Society; 2017. 10-24 p.
  9. Yates DH, Kharitonov SA, Barnes PJ. Effect of short- and longacting inhaled beta2-agonists on exhaled nitric oxide in asthmatic patients. Eur Respir J. 1997;10(7):1483-8. https://doi.org/10.1183/09031936.97.10071483
  10. Gross NJ. Anticholinergic agents in asthma and COPD. Eur J Pharmacol. 2006;533(1-3):36-9. https://doi.org/10.1016/j.ejphar.2005.12.072
  11. Chauhan BF, Ducharme FM. Anti-leukotriene agents compared to inhaled corticosteroids in the management of recurrent and/or chronic asthma in adults and children. Cochrane Database Syst Rev. 2012;2012(5):CD002314.
  12. Breslin FJ, McFadden ER Jr, Ingram RH Jr. The effects of cromolyn sodium on the airway response to hyperpnea and cold air in asthma. Am Rev Respir Dis. 1980;122(1):11-6. https://doi.org/10.1164/arrd.1980.122.5P2.11
  13. Guilbert TW, Morgan WJ, Zeiger RS, Mauger DT, Boehmer SJ, Szefler SJ, et al. Long-term inhaled corticosteroids in preschool children at high risk for asthma. N Engl J Med. 2006;354(19):1985-97. https://doi.org/10.1056/NEJMoa051378
  14. Chaudhuri R, Livingston E, McMahon AD, Thomson L, Borland W, Thomson NC. Cigarette smoking impairs the therapeutic response to oral corticosteroids in chronic asthma. Am J Respir Crit Care Med. 2003;168(11):1308-11. https://doi.org/10.1164/rccm.200304-503OC
  15. Sankar J, Lodha R, Kabra SK. Doxofylline: the next generation methylxanthine. Indian J Pediatr. 2008;75(3):251-4. https://doi.org/10.1007/s12098-008-0054-1
  16. Salami SA, Salahdeen HM, Rahman OC, Murtala BA, Raji Y. Oral administration of Tridax procumbens aqueous leaf extract attenuates reproductive function impairments in L-NAME induced hypertensive male rats. Middle East Fertil Soc J. 2017;22(3):219-25. https://doi.org/10.1016/j.mefs.2017.03.001
  17. Janssen LJ, Tazzeo T, Zuo J, Pertens E, Keshavjee S. KCl evokes contraction of airway smooth muscle via activation of RhoA and Rho-kinase. Am J Physiol Lung Cell Mol Physiol. 2004;287(4):L852-8. https://doi.org/10.1152/ajplung.00130.2004
  18. Ouedraogo N, Roux E. Physiology of airway smooth muscle contraction: an overview. J Pulm Respir Med. 2014;4(6):221.
  19. Buels KS, Fryer AD. Muscarinic receptor antagonists: effects on pulmonary function. Handb Exp Pharmacol. 2012;208:317-41. https://doi.org/10.1007/978-3-642-23274-9_14
  20. Boskabady MH, Krachian MA. Mechanisms of bronchodilatory effect of Carum copticum on isolated guinea pig tracheal chains. Physiol Pharmacol. 2000;4:103-9.
  21. Boskabady MH, Sheiravi N. Inhibitory effect of nigella sativa on histamine (H1) receptors of isolated guinea pig tracheal chains. Pharm Biol. 2002;40(8):596-602. https://doi.org/10.1076/phbi.40.8.596.14653
  22. Boskabady MH, Shahabi M. Bronchodilatory and anticholinergic effects of Nigella sativa on isolated guinea pig tracheal chains. Iran J Med Sci. 1997;22(3-4):127-33.
  23. Emami B, Shakeri F, Gholamnezhad Z, Saadat S, Boskabady M, Azmounfar V, et al. Calcium and potassium channels are involved in curcumin relaxant effect on tracheal smooth muscles. Pharm Biol. 2020;58(1):257-64. https://doi.org/10.1080/13880209.2020.1723647
  24. Shakeri F, Boskabady MH. A review of the relaxant effect of various medicinal plants on tracheal smooth muscle, their possible mechanism(s) and potency. J Ethnopharmacol. 2015;175:528-48. https://doi.org/10.1016/j.jep.2015.10.017
  25. Chedi BAZ, Mandawari FK. In vitro evaluation of antiasthmatic activity of ethanol leaf extract of Guiera senegalensis j. F. GMEL (Combretaceae). Afr J Pharm Pharmacol. 2018;12(9):112-20. https://doi.org/10.5897/AJPP2017.4882
  26. Dare A, Salami SA, Kunle-Alabi OT, Akindele OO, Raji Y. Comparative evaluation of the aphrodisiac efficacy of sildenafil and Carpolobia lutea root extract in male rabbits. J Intercult Ethnopharmacol. 2015;4(4):302-7. https://doi.org/10.5455/jice.20151101092942
  27. Shi R, Xu JW, Xiao ZT, Chen RF, Zhang YL, Lin JB, et al. Naringin and naringenin relax rat tracheal smooth by regulating BKCa activation. J Med Food. 2019;22(9):963-70. https://doi.org/10.1089/jmf.2018.4364
  28. Ikewuchi CC, Ikewuchi JC, Ifeanacho MO. Phytochemical composition of Tridax procumbens Linn leaves: potential as a functional food. Food Nutr Sci. 2015;6(11):992-1004.
  29. Gosens R, Gross N. The mode of action of anticholinergics in asthma. Eur Respir J. 2018;52(4):1701247. https://doi.org/10.1183/13993003.01247-2017