DOI QR코드

DOI QR Code

Structure of a permanent magnet motor used for electric vehicles to suppress the eddy current effect

  • Zhang, Meiwei (School of Electrical Engineering, Beijing Jiaotong University) ;
  • Li, Weili (School of Electrical Engineering, Beijing Jiaotong University) ;
  • Xie, Wanlu (School of Electrical Engineering, Beijing Jiaotong University) ;
  • Zhang, Liangliang (Jing-Jin Electric Technologies Co., Ltd.)
  • Received : 2021.10.16
  • Accepted : 2022.04.17
  • Published : 2022.09.20

Abstract

A demagnetization fault in the permanent magnet (PM) may occur when the temperature exceeds the limit temperature of the PM material due to the limited heat dissipation of the rotor in PM motors in the driving system of electric vehicles. In addition, PM thermal stress arises as a result of the unbalanced axial temperature distribution of the motor. When the thermal stress exceeds the yield strength of PM, micro-deformation of the PM structure happens and affects the performance and structural reliability of the motor. In this study, the rotor structure of an 18 kW PM motor is improved, and an eddy current ring structure of stainless steel is proposed. First, the effects of eddy current rings with axial lengths of 2, 5, and 10 mm on the eddy current losses of PM are compared. Second, a three-dimensional, steady-state temperature model of the motor is established to analyze the effects of the eddy current rings with different axial lengths on rotor temperature when the motor is running at different speeds. Results show that the eddy current ring structure with 2 mm axial length has the best effect on reducing rotor temperature. Lastly, the simulation results are verified using the test results of the 18 kW PM motor.

Keywords

Acknowledgement

This work was supported by the Fundamental Research Funds for Central Universities (2019JBZ101) and the High Power and High Effciency Electric Drive Assembly System Development and Industrialization Project (TC210H02Q) in China.

References

  1. Li, W., Li, L., Gao, H., et al.: Influence of direct-connected inverter with one power switch open circuit fault on electromagnetic field and temperature field of permanent magnet synchronous motor. IET Electr. Power Appl. 12(6), 815-825 (2018) https://doi.org/10.1049/iet-epa.2017.0631
  2. Dai, Y., Ni, S., Xu, D., et al.: Disturbance-observer based prescribed-performance fuzzy sliding mode control for PMSM in electric vehicles. Eng. Appl. Artif. Intell. 104, 104361 (2021) https://doi.org/10.1016/j.engappai.2021.104361
  3. Zhang, Q., Raherimihaja, H.J., Xu, G., et al.: Design and performance analysis of segmented three-phase IPMSM for EVs integrated battery charger. IEEE Trans. Industr. Electron. 68(10), 9114-9124 (2021) https://doi.org/10.1109/TIE.2020.3021642
  4. Qiu, Z., Chen, Y., Kang, Y., et al.: Investigation into periodic signal-based dithering modulations for suppression sideband vibro-acoustics in PMSM used by electric vehicles. IEEE Trans. Energy Convers. 36(3), 1787-1796 (2021) https://doi.org/10.1109/TEC.2020.3046669
  5. Miguel-Espinar, C., Heredero-Peris, D., Gross, G., et al.: Maximum torque per voltage flux-weakening strategy with speed limiter for PMSM drives. IEEE Trans. Industr. Electron. 68(10), 9254-9264 (2021) https://doi.org/10.1109/TIE.2020.3020029
  6. Ai, Q., Wei, H., Li, T., et al.: Optimisation of reverse salient rotor for interior permanent magnet synchronous motor and experimental validation. IET Electric Power Appl. 15, 1-17 (2021) https://doi.org/10.1049/elp2.12001
  7. Bi, Y., Chai, F., Chen, L.: The study of cooling enhancement in axial flux permanent magnet motors for electric vehicles. IEEE Trans. Ind. Appl. 57(5), 4831-4839 (2021) https://doi.org/10.1109/TIA.2021.3098251
  8. Zhu, Z., Huang, Y., Dong, J., et al.: Rotor eddy current loss reduction with permeable retaining sleeve for permanent magnet synchronous machine. IEEE Trans. Energy Convers. 35(2), 1088-1097 (2020) https://doi.org/10.1109/TEC.2020.2966674
  9. Zhao, W., Pan, X., Ji, J., et al.: Analysis of PM eddy current loss in four-phase fault-tolerant flux-switching permanent-magnet machines by air-gap magnetic field modulation theory. IEEE Trans. Industr. Electron. 67(7), 5369-5378 (2020) https://doi.org/10.1109/TIE.2019.2931508
  10. Sun, X., Shi, Z., Lei, G., et al.: Analysis and design optimization of a permanent magnet synchronous motor for a campus patrol electric vehicle. IEEE Trans. Veh. Technol. 68(11), 10535-10544 (2019) https://doi.org/10.1109/TVT.2019.2939794
  11. Zheng, J., Zhao, W., Ji, J., et al.: Design to reduce rotor losses in fault-tolerant permanent-magnet machines. IEEE Trans. Industr. Electron. 65(11), 8476-8487 (2018) https://doi.org/10.1109/TIE.2018.2807363
  12. Jun, H.-W., Lee, J.-W., Yoon, G.-H., et al.: Optimal design of the PMSM retaining plate with 3-D barrier structure and eddycurrent loss-reduction effect. IEEE Trans. Industr. Electron. 65(2), 1808-1818 (2018) https://doi.org/10.1109/TIE.2017.2736501
  13. Zhang, Y., McLoone, S., Cao, W., et al.: Power loss and thermal analysis of a MW high-speed permanent magnet synchronous machine. IEEE Trans. Energy Convers. 32(4), 1468-1478 (2017) https://doi.org/10.1109/TEC.2017.2710159
  14. Nair, S.S., Wang, J., Chin, R., et al.: Analytical prediction of 3-D magnet eddy current losses in surface mounted PM machines accounting slotting effect. IEEE Trans. Energy Convers. 32(2), 414-423 (2017) https://doi.org/10.1109/TEC.2016.2638477
  15. Jara, W., Lindh, P., Tapia, J.A., et al.: Rotor eddy-current losses reduction in an axial flux permanent-magnet machine. IEEE Trans. Industr. Electron. 63(8), 4729-4737 (2016) https://doi.org/10.1109/TED.2016.2616370
  16. Li, W., Cao, J., Zhang, X.: Electrothermal analysis of induction motor with compound cage rotor used for PHEV. IEEE Trans. Industr. Electron. 57(2), 660-668 (2010) https://doi.org/10.1109/TIE.2009.2033088
  17. Merdzan, M.: Performance analysis of high-speed electric machines supplied by PWM inverters based on the harmonic modeling method. Energies 14, 2606 (2021) https://doi.org/10.3390/en14092606
  18. Cheng, X., Wei, Xu., Guanghui, Du., et al.: Novel rotors with low eddy current loss for high speed permanent magnet machines. CES Trans. Electr. Mach. Syst. 3(2), 187-194 (2019) https://doi.org/10.30941/CESTEMS.2019.00025
  19. Li, W., Zhang, X., Cheng, S., et al.: Thermal optimization for a HSPMG used for distributed generation systems. IEEE Trans. Industr. Electron. 60(2), 474-482 (2013) https://doi.org/10.1109/TIE.2012.2187418
  20. Zhang, M., Luo, S., Liu, X., et al.: The eddy current loss segmentation model of permanent magnet for temperature analysis in high-speed permanent magnet motor. IET Power Electron. 14, 751-759 (2021) https://doi.org/10.1049/pel2.12009