DOI QR코드

DOI QR Code

Matching network design for input impedance optimization of four-coil magnetic resonance coupling wireless power transfer systems

  • Wang, Zhixuan (College of Electrical Engineering, Xi'an University of Technology) ;
  • Sun, Xiangdong (College of Electrical Engineering, Xi'an University of Technology) ;
  • Zhang, Qi (College of Electrical Engineering, Xi'an University of Technology) ;
  • Chen, Zechi (College of Electrical Engineering, Xi'an University of Technology)
  • Received : 2021.12.13
  • Accepted : 2022.05.13
  • Published : 2022.09.20

Abstract

The input impedance of a four-coil magnetic resonance coupling wireless power transfer (MRC-WPT) system is in the form of parallel resonance at the optimal operating frequency. When the operating frequency deviates slightly, the system input impedance decreases rapidly. At this time, if a voltage source radio frequency power amplifier (RFPA) is used as the excitation power supply, the operating current is increased, which is not conducive to device safety. In this paper, a matching network is designed and inserted between the power supply and the MRC-WPT circuit to convert the input impedance into a series resonant form, so the MRC-WPT circuit can be safely connected to the voltage source RFPA. Finally, an experimental prototype is built to verify the applicability of the proposed matching network.

Keywords

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China under Grant 51577155 and the Natural Science Foundation of Shaanxi Province under Grant 2018JZ5006.

References

  1. Lu, X., Wang, P., Niyato, D., Kim, D.I., Han, Z.: Wireless charging technologies: fundamentals, standards, and network applications. IEEE Commun. Surv. Tutor. 18(2), 1413-1452 (2016) https://doi.org/10.1109/COMST.2015.2499783
  2. Xu, Y., Chen, Q., Tian, D., Zhang, Y., Li, B., Tang, H.: Selection of high transfer stability and optimal power-efficiency tradeoff with respect to distance region for underground wireless power transfer systems. J. Power Electron. 20(6), 1662-1671 (2020) https://doi.org/10.1007/s43236-020-00156-x
  3. Yang, C., Chang, C., Lee, S., Chang, S., Chiou, L.: Efficient fourcoil wireless power transfer for deep brain stimulation. IEEE Trans. Microw. Theory Tech. 65(7), 2496-2507 (2017) https://doi.org/10.1109/TMTT.2017.2658560
  4. Lee, H.H., Kang, S.H., Jung, C.W.: 3D-spatial efficiency optimization of MR-WPT using a reconfigurable resonator-array for laptop applications. IET Microw. Antennas Propag. 11(11), 1594-1602 (2017) https://doi.org/10.1049/iet-map.2017.0185
  5. Zhuang, Y., Chen, A., Xu, C., Huang, Y., Zhao, H., Zhou, J.: Range-adaptive wireless power transfer based on differential coupling using multiple bidirectional coils. IEEE Trans. Ind. Electron. 67(9), 7519-7528 (2020) https://doi.org/10.1109/TIE.2019.2945304
  6. Xia, C., Jia, R., Wu, Y., Yu, Q., Zhou, Y.: WPIT technology based on the fundamental-harmonic component for a single-channel and two-coil ICPT system. IET Power Electron. 12(10), 2608-2614 (2019) https://doi.org/10.1049/iet-pel.2018.6016
  7. Zhang, Y., Zhao, Z., Lu, T.: Quantitative analysis of system efficiency and output power of four-coil resonant wireless power transfer. IEEE J. Emerg. Sel. Top. Power Electron. 3(1), 184-190 (2015) https://doi.org/10.1109/JESTPE.2014.2319295
  8. Rotaru, M.D., Tanzania, R., Ayoob, R., Kheng, T.Y., Sykulski, J.K.: Numerical and experimental study of the effects of load and distance variation on wireless power transfer systems using magnetically coupled resonators. IET Sci. Meas. Technol. 9(2), 160-171 (2015) https://doi.org/10.1049/iet-smt.2014.0175
  9. Sample, A.P., Meyer, D.T., Smith, J.R.: Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Trans. Ind. Electron. 58(2), 544-554 (2011) https://doi.org/10.1109/TIE.2010.2046002
  10. Zhang, Y., Zhao, Z., Chen, K.: Frequency-splitting analysis of four-coil resonant wireless power transfer. IEEE Trans. Ind. Appl. 50(4), 2436-2445 (2014) https://doi.org/10.1109/TIA.2013.2295007
  11. Choi, W., Park, C., Lee, K.: Circuit analysis of achievable transmission efficiency in an overcoupled region for wireless power transfer systems. IEEE Syst. J. 12(4), 3873-3876 (2018) https://doi.org/10.1109/JSYST.2017.2767060
  12. Thackston, K.A., Mei, H., Irazoqui, P.P.: Coupling matrix synthesis and impedance-matching optimization method for magnetic resonance coupling systems. IEEE Trans. Microw. Theory Tech. 66(3), 1536-1542 (2018) https://doi.org/10.1109/TMTT.2017.2741963
  13. Huang, R., Zhang, B.: Frequency, impedance characteristics and HF converters of two-coil and four-coil wireless power transfer. IEEE J. Emerg. Sel. Top. Power Electron. 3(1), 177-183 (2015) https://doi.org/10.1109/JESTPE.2014.2315997
  14. Moon, S., Moon, G.: Wireless power transfer system with an asymmetric four-coil resonator for electric vehicle battery chargers. IEEE Trans. Power Electron. 31(10), 6844-6854 (2016)
  15. Liu, F., Yang, Y., Ding, Z., Chen, X., Kennel, R.M.: A multifrequency superposition methodology to achieve high efficiency and targeted power distribution for a multiload MCR WPT system. IEEE Trans. Power Electron. 33(10), 9005-9016 (2018) https://doi.org/10.1109/TPEL.2017.2784566
  16. Narayanamoorthi, R., Juliet, A.V., Chokkalingam, B.: Cross interference minimization and simultaneous wireless power transfer to multiple frequency loads using frequency bifurcation approach. IEEE Trans. Power Electron. 34(11), 10898-10909 (2019) https://doi.org/10.1109/TPEL.2019.2898453
  17. Liu, F., Yang, Y., Ding, Z., Chen, X., Kennel, R.M.: Eliminating cross interference between multiple receivers to achieve targeted power distribution for a multi-frequency multi-load MCR WPT system. IET Power Electron. 11(8), 1321-1328 (2018) https://doi.org/10.1049/iet-pel.2017.0770
  18. Badowich, C., Markley, L.: Idle power loss suppression in magnetic resonance coupling wireless power transfer. IEEE Trans. Ind. Electron. 65(11), 8605-8612 (2018) https://doi.org/10.1109/TIE.2018.2813958
  19. Huang, S., Li, Z., Lu, K.: Frequency splitting suppression method for four-coil wireless power transfer system. IET Power Electron. 9(15), 2859-2864 (2016) https://doi.org/10.1049/iet-pel.2015.0376
  20. Zhou, W., Sandeep, S., Wu, P., Yang, P., Yu, W., Huang, S.Y.: A wideband strongly coupled magnetic resonance wireless power transfer system and its circuit analysis. IEEE Microw. Wirel. Compon. Lett. 28(12), 1152-1154 (2018) https://doi.org/10.1109/LMWC.2018.2876767
  21. Lee, G., Waters, B.H., Shin, Y.G., Smith, J.R., Park, W.S.: A reconfigurable resonant coil for range adaptation wireless power transfer. IEEE Trans. Microw. Theory Tech. 64(2), 624-632 (2016)
  22. Cheng, C., et al.: A load-independent LCC-compensated wireless power transfer system for multiple loads with a compact coupler design. IEEE Trans. Ind. Electron. 67(6), 4507-4515 (2020) https://doi.org/10.1109/TIE.2019.2931260
  23. Lee, H.H., Kang, S.H., Jung, C.W.: MR-WPT with reconfigurable resonator and ground for laptop application. IEEE Microw. Wirel. Compon. Lett. 28(3), 269-271 (2018) https://doi.org/10.1109/LMWC.2018.2802719
  24. Liu, S., Liu, M., Yang, S., Ma, C., Zhu, X.: A novel design methodology for high-efficiency current-mode and voltage-mode Class-E power amplifiers in wireless power transfer systems. IEEE Trans. Power Electron. 32(6), 4514-4523 (2017) https://doi.org/10.1109/TPEL.2016.2600268
  25. Choi, J., Tsukiyama, D., Tsuruda, Y., Davila, J.M.R.: High-frequency, high-power resonant inverter with eGaN FET for wireless power transfer. IEEE Trans. Power Electron. 33(3), 1890-1896 (2018) https://doi.org/10.1109/TPEL.2017.2740293
  26. Li, H., Wang, K., Huang, L., Chen, W., Yang, X.: Dynamic, modeling based on coupled modes for wireless power transfer systems. IEEE Trans. Power Electron. 30(11), 6245-6253 (2015) https://doi.org/10.1109/TPEL.2014.2376474
  27. Zhang, Y., Chen, K., He, F., Zhao, Z., Lu, T., Yuan, L.: Closedform oriented modeling and analysis of wireless power transfer system with constant-voltage source and load. IEEE Trans. Power Electron. 31(5), 3472-3481 (2016) https://doi.org/10.1109/TPEL.2015.2465847