DOI QR코드

DOI QR Code

Comparison of junction temperature variations of IGBT modules under DC and PWM power cycling test conditions

  • An, Tong (Institute of Electronics Packaging Technology and Reliability, Faculty of Materials and Manufacturing, Beijing University of Technology) ;
  • Tian, Yanzhong (Institute of Electronics Packaging Technology and Reliability, Faculty of Materials and Manufacturing, Beijing University of Technology) ;
  • Qin, Fei (Institute of Electronics Packaging Technology and Reliability, Faculty of Materials and Manufacturing, Beijing University of Technology) ;
  • Dai, Yanwei (Institute of Electronics Packaging Technology and Reliability, Faculty of Materials and Manufacturing, Beijing University of Technology) ;
  • Gong, Yanpeng (Institute of Electronics Packaging Technology and Reliability, Faculty of Materials and Manufacturing, Beijing University of Technology) ;
  • Chen, Pei (Institute of Electronics Packaging Technology and Reliability, Faculty of Materials and Manufacturing, Beijing University of Technology)
  • 투고 : 2021.12.29
  • 심사 : 2022.04.17
  • 발행 : 2022.09.20

초록

This paper presents an experimental investigation and a finite element (FE) analysis study on the thermal and mechanical behaviors of insulated-gate bipolar transistor (IGBT) power modules under various operating conditions. The power cycling test conditions are provided by two test benches, a direct current (DC) test bench and a pulse width modulation (PWM) test bench. Infrared (IR) camera acquisition methods are suggested as an approach for transient temperature measurements to estimate the effects of operating conditions and switching frequency on the thermal performance of an IGBT module. An electrical-thermal-mechanical FE model of an IGBT module is employed to determine the stress in the interconnections of an IGBT module induced by junction temperature fluctuations. Results indicate that the operating conditions significantly impact the maximum junction temperature, the junction temperature increase rate, and the junction temperature distribution of an IGBT chip and the thermally induced stress in the interconnections. The switching frequency strongly impacts the junction temperature of an IGBT chip, and the maximum junction temperature increases when the switching frequency increases due to the increasing switching loss. Furthermore, the junction temperature variation induced by the instantaneous switching loss is estimated by the proposed IR camera measurement method.

키워드

과제정보

This research was supported by the National Natural Science Foundation of China (NSFC) under Grant 11872078, 11902009, and 12002009.

참고문헌

  1. Snezana, M., Ivica, D., Vojkan, S., Danijel, M., Ninoslav, D.: Annealing of radiation-induced defects in burn-in stressed power VDMOSFETs. Nucl. Technol. Radiat. Prot. 26, 18-24 (2011) https://doi.org/10.2298/NTRP1101018D
  2. Tahi, H., Tahanout, C., Boubaaya, M., Djezzar, B., Merah, S.M., Nadji, B., Saoula, N.: Experimental investigation of NBTI degradation in power VDMOS transistors under low magnetic field. IEEE Trans. Mater. Reliab. 17, 99-105 (2017) https://doi.org/10.1109/TDMR.2017.2666260
  3. Peyghami, S., Pakensky, P., Blaabjerg, F.: An overview on the reliability of modern power electronic based power systems. IEEE J. Power Electron. 1, 34-50 (2020) https://doi.org/10.1109/OJPEL.2020.2973926
  4. Yang, S., Bryant, A., Mawby, P., Xiang, D., Ran, L., Tavner, P.: An industry-based survey of reliability in power electronic converters. IEEE Trans. Ind. Appl. 47, 1441-1451 (2011) https://doi.org/10.1109/TIA.2011.2124436
  5. Manic, I., Dankovic, D., Prijic, A., Davidovic, V., Djoric, V.S., Golubovic, S., Prijic, Z., Stojadinovic, N.: NBTI related degradation and lifetime estimation in p-channel power VDMOSFETs under the static and pulsed NBT stress conditions. Microelectron. Reliab. 51, 1540-1543 (2011) https://doi.org/10.1016/j.microrel.2011.06.004
  6. Ciappa, M.: Selected failure mechanisms of modern power modules. Microelectron. Reliab. 42, 653-667 (2002) https://doi.org/10.1016/S0026-2714(02)00042-2
  7. United States Air Force Avionics Integrity Program cited in R. Simons.: Thermal design for electronics cooling applications. Short Course.
  8. Avenas, Y., Dupont, L., Khatir, Z.: Temperature measurement of power semiconductor devices by thermo-sensitive electrical parameters-a review. IEEE Trans. Power Electron. 27, 3081-3092 (2012) https://doi.org/10.1109/TPEL.2011.2178433
  9. Ouhab, M., Khatir, Z., Ibrahim, A., Ousten, J.P., Mitova, R., Wang, M.X.: New analytical model for real-time junction temperature estimation of multichip power module used in a motor drive. IEEE Trans. Power Electron. 33, 5292-5301 (2018) https://doi.org/10.1109/TPEL.2017.2736534
  10. Choi, U.M., Blaabjerg, F., Jorgensen, S.: Power cycling test methods for reliability assessment of power device modules in respect to temperature stress. IEEE Trans. Power Electron. 33, 2531-2551 (2018) https://doi.org/10.1109/TPEL.2017.2690500
  11. Berning, D., Reichl, J., Hefner, A., Hernandez, M., Ellenwood, C., Lai, J.S.: High speed IGBT module transient thermal response measurements for model validation. Conf. Rec. IAS Annu. Meet. (2003). https://doi.org/10.1109/IAS.2003.1257817
  12. Ammous, A., Allard, B., Morel, H.: Transient temperature measurements and modeling of IGBT's under short circuit. IEEE Trans. Power Electron. 13, 12-25 (1998) https://doi.org/10.1109/63.654955
  13. Baker, N., Dupont, L., Nielsen, S.M., Iannuzzo, F., Liserre, M.: IR camera validation of IGBT junction temperature measurement via peak gate current. IEEE Trans. Power Electron. 32, 3099-3111 (2017) https://doi.org/10.1109/TPEL.2016.2573761
  14. Carubelli, S., Khatir, Z.: Experimental validation of a thermal modelling method dedicated to multichip power modules in operating conditions. Microelectron. J. 34, 1143-1151 (2003) https://doi.org/10.1016/S0026-2692(03)00205-2
  15. Scheuermann, U., Schuler, S.: Power cycling results for different control strategies. Microelectron. Reliab. 50, 1203-1209 (2010) https://doi.org/10.1016/j.microrel.2010.07.135
  16. Hillkirk, L.M., Breitholtz, B., Domeij, M.: Space and time resolved surface temperature distributions in Si power diodes operating under selfheating conditions. Solid-State Electron. 45, 2057-2067 (2001) https://doi.org/10.1016/S0038-1101(01)00247-7
  17. Gao, B., Yang, F., Chen, M., Ran, L., Ullah, I., Xu, S., Mawby, P.A.: A temperature gradient-based potential defects identification method for IGBT module. IEEE Trans. Power Electron. 32, 2227-2242 (2017) https://doi.org/10.1109/TPEL.2016.2565701
  18. Czerny, B., Lederer, M., Nagl, B., Trnka, A., Khatibi, G., Thoben, M.: Thermo-mechanical analysis of bonding wires in IGBT modules under operating conditions. Microelectron. Reliab. 52, 2353-2357 (2012) https://doi.org/10.1016/j.microrel.2012.06.081
  19. Lai, W., Chen, M.Y., Ran, L., Xu, S.Y., Qin, H., Alatise, O., Mawby, P.A.: Study on the lifetime characteristics of power modules under power cycling conditions. IET Power Electron. 9, 1045-1052 (2016) https://doi.org/10.1049/iet-pel.2015.0225
  20. Qin, F., Bie, X., An, T., Dai, J., Chen, P.: A lifetime prediction method for IGBT modules considering the self-accelerating effect of bond wire damage. IET Power Electron. 9, 2271-2284 (2021)
  21. Zhao, J.Y., An, T., Fang, C., Bie, X.R., Qin, F., Chen, P.: A study on the effect of microstructure evolution of the aluminum metallization layer on its electrical performance during power cycling. IEEE Trans. Power Electron 34, 11036-11044 (2019) https://doi.org/10.1109/TPEL.2019.2895695
  22. Karami, M., Tallam, R.: Thermal characterization of SiC modules for variable frequency drives. IEEE J. Power Electron. 10, 336-345 (2021) https://doi.org/10.1109/OJPEL.2021.3075441
  23. Wang, H., Dinwiddie, R.B.: Synchronizing the IR camera to capture high speed thermal transients. Thermosense XXIII. 4360, 30-36 (2001) https://doi.org/10.1117/12.421024
  24. Montanini, R., Scimone, T., Caro, S.D., Testa, A.: Fullframe infrared thermal imaging of power electronics devices by means of multiple time-delayed measurements. Quant. InfraRed Thermogr. 12, 149-161 (2015) https://doi.org/10.1080/17686733.2015.1039292
  25. Perpina, X., Serviere, J.F., Saiz, J., Barlini, D., Mermet-Guyennet, M., Millan, J.: Temperature measurement on series resistance and devices in power packs based on on-state voltage drop monitoring at high current. Microelectron. Reliab. 46, 1834-1839 (2006) https://doi.org/10.1016/j.microrel.2006.07.078
  26. Smet, V., Forest, F., Huselstein, J.J., Rashed, A., Richardeau, F.: Evaluation of Vce monitoring as a real-time method to estimate aging of bond wire-IGBR modules stressed by power cycling. IEEE Trans. Ind. Electron. 60, 2760-2770 (2013) https://doi.org/10.1109/TIE.2012.2196894