DOI QR코드

DOI QR Code

Machine learning-based parameter identification method for wireless power transfer systems

  • Zhang, Hao (School of Automation and Electronic Information, Xiangtan University) ;
  • Tan, Ping‑an (School of Automation and Electronic Information, Xiangtan University) ;
  • Shangguan, Xu (School of Automation and Electronic Information, Xiangtan University) ;
  • Zhang, Xulian (School of Automation and Electronic Information, Xiangtan University) ;
  • Liu, Huadong (CRRC Zhuzhou Electric Locomotive Research Institute Co., Ltd.)
  • Received : 2021.10.26
  • Accepted : 2022.04.26
  • Published : 2022.09.20

Abstract

Parameter identification is an effective way to obtain uncertain parameters of wireless power transfer (WPT) systems, which is essential to achieving robust control and efficiency improvement. The traditional method relies on the phase lock of the primary impedance angle or lengthy algorithm iterations, and the identification depends on a high sampling accuracy and is time-consuming. In this study, a flexible parameter identification method based on the fusion of a machine learning model and a circuit model is proposed. Taking the primary voltage and current as input characteristic factors, support vector regression (SVR) is used to establish a machine learning model for coupling coefficient identification. In addition, the optimal model parameters are sought based on the grid search method. On the basis of coupling coefficient identification, the circuit model is used to realize the identification of the load resistance. Finally, the effectiveness of the proposed parameter identification method for a WPT system is verified by experimental results.

Keywords

Acknowledgement

This work was supported in part by the Special Funding for Innovative Construction in Hunan Province of China under Grant 2020GK2073, in part by the Excellent Youth Foundation of Hunan Education Department of China under Grant 18B072.

References

  1. Mahmoud, H., Elmahmoud, W., Barzegaran, M., Brake, N.: Efficient wireless power charging of electric vehicle by modifying the magnetic characteristics of the transmitting medium. IEEE Trans. Magn. 53(6), 1-5 (2017)
  2. Budhia, M., Boys, J.T., Covic, G.A., Huang, C.Y.: Development of a single-sided flux magnetic coupler for electric vehicle ipt charging systems. IEEE Trans. Industr. Electron. 60(1), 318-328 (2013) https://doi.org/10.1109/TIE.2011.2179274
  3. Ramrakhyani, A.K., Mirabbasi, S., Chiao, M.: Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants. IEEE Trans. Biomed. Circ. Syst. 5(1), 48-63 (2011) https://doi.org/10.1109/TBCAS.2010.2072782
  4. Hui, S.Y.: Planar wireless charging technology for portable electronic products and qi. Proc. IEEE 101(6), 1290-1301 (2013) https://doi.org/10.1109/JPROC.2013.2246531
  5. Tan, P., Peng, T., Gao, X., Zhang, B.: Flexible combination and switching control for robust wireless power transfer system with hexagonal array coil. IEEE Trans. Power Electron. 36(4), 3868-3882 (2021) https://doi.org/10.1109/TPEL.2020.3018908
  6. Zhu, H., Zhang, B., Wu, L.: Output power stabilization for wireless power transfer system employing primary-side-only control. IEEE Access 8, 63735-63747 (2020) https://doi.org/10.1109/ACCESS.2020.2983465
  7. Yin, J., Lin, D., Lee, C., Hui, S.Y.R.: A systematic approach for load monitoring and power control in wireless power transfer systems without any direct output measurement. IEEE Trans. Power Electron. 30(3), 1657-1667 (2015) https://doi.org/10.1109/TPEL.2014.2317183
  8. Yin, J., Lin, D., Lee, C., Parisini, T., Hui, S.Y.: Front-end monitoring of multiple loads in wireless power transfer systems without wireless communication systems. IEEE Trans. Power Electron. 31(3), 2510-2517 (2016) https://doi.org/10.1109/TPEL.2015.2426313
  9. Yin, J., Lin, D., Parisini, T., Hui, S.Y.: Front-end monitoring of the mutual inductance and load resistance in a series-series compensated wireless power transfer system. IEEE Trans. Power Electron. 31(10), 7339-7352 (2016) https://doi.org/10.1109/TPEL.2015.2509962
  10. Meng, X., Qiu, D., Lin, M., Tang, S.C., Zhang, B.: Output voltage identification based on transmitting side information for implantable wireless power transfer system. IEEE Access 7, 2938-2946 (2019) https://doi.org/10.1109/ACCESS.2018.2886424
  11. Chow, P.W., Chung, H., Cheng, C.S., Wang, W.: Use of transmitter- side electrical information to estimate system parameters of wireless inductive links. IEEE Trans. Power Electron. 32(9), 7169-7186 (2017) https://doi.org/10.1109/TPEL.2016.2623681
  12. Lin, D., Jian, Y., Hui, S.: Parameter identification of wireless power transfer systems using input voltage and current. In: 2014 IEEE energy conversion congress and exposition (ECCE), pp. 832-836 (2014)
  13. Chow, J., Chung, H., Cheng, C.S.: Use of transmitter-side electrical information to estimate mutual inductance and regulate receiver-side power in wireless inductive link. IEEE Trans. Power Electron. 31(9), 6079-6091 (2016) https://doi.org/10.1109/TPEL.2016.2530816
  14. Tan, P., Peng T., Cao, S.: Modeling and implementation of switching control for multi-transmitter wireless power transfer. In: 2018 IEEE energy conversion congress and exposition (ECCE), pp. 1987-1991 (2018)
  15. Li, Y., Hu, J., Chen, F., Liu, S., Yan, Z., He, Z.: A new-variablecoil- structure-based IPT system with load-independent constant output current or voltage for charging electric bicycles. IEEE Trans. Power Electron. 33(10), 8226-8230 (2018) https://doi.org/10.1109/TPEL.2018.2812716
  16. Vapnik, V.: The Nature of Statistical Learning Theory, 2nd edn. Springer, Berlin (1999)
  17. Trinchero, R., Larbi, M., Torun, H.M., Canavero, F.G., Swaminathan, M.: Machine learning and uncertainty quantification for surrogate models of integrated devices with a large number of parameters. IEEE Access 7, 4056-4066 (2019) https://doi.org/10.1109/ACCESS.2018.2888903
  18. Hayes, J.G., O'Donovan, N., Egan, M.G., O'Donnell, T.: Inductance characterization of high-leakage transformers. Appl. Power Electron. Conf. Expos. 2003, 1150-1156 (2003)
  19. Cherkassky, V., Ma, Y.: Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw. 17(1), 113-126 (2004) https://doi.org/10.1016/S0893-6080(03)00169-2
  20. Cai, J., Yu, C., Sun, L., Chen, S., King, J.B.: Dynamic behavioral modeling of RF power amplifier based on time-delay support vector regression. IEEE Trans. Microw. Theory Tech. 67(2), 533-543 (2019) https://doi.org/10.1109/TMTT.2018.2884414
  21. Seok, K.H., Cho, D., Hwang, C., Shim, J.: Support vector quantile regression using asymmetric e-insensitive loss function. Commun. Stat. Appl. Methods 18(2), 165-170 (2010)
  22. Pattanayak, A.S., Pattnaik, B.S., Udgata, S.K., Panda, A.K.: Development of chemical oxygen on demand (cod) soft sensor using edge intelligence. IEEE Sens. J. 20(24), 14892-14902 (2020) https://doi.org/10.1109/JSEN.2020.3010134
  23. Zakrani, A., Assia, N., Abdelaziz, M.: Support vector regression based on grid-search method for agile software effort prediction. In: IEEE 5th international congress on information science and technology (CiSt), pp. 1-6 (2018)
  24. Tan, P., Fu, Y., Liu, C., Guo, Y.: Modeling of mutual inductance for hexagonal coils with horizontal misalignment in wireless power transfer. In: 2018 IEEE energy conversion congress and exposition (ECCE), pp. 1981-1986 (2018)
  25. Zhang, Y., Guo, Y., Zhu, Q., Wang, L.: Load and mutual inductance estimation based on phase-differences for electric vehicle wireless charging system. IET Power Electron. 12(9), 2345-2352 (2019) https://doi.org/10.1049/iet-pel.2018.5194
  26. Li, S., Hui, S.: Comparative study on front-end parameter identification methods for wireless power transfer without wireless communication systems. In: International power electronics conference (IPEC-Niigata 2018 -ECCE Asia), pp. 2552-2557 (2018)