Acknowledgement
This work was supported in part by the National Natural Science Foundation of China under Grant 52167021, and in part by the Key Program of Natural Science Foundation of Guangxi under Grant 2018GXNSFDA281037.
References
- Patil, D., McDonough, M.K., Miller, J.M., Fahimi, B., Balsara, P.T.: Wireless power transfer for vehicular applications: overview and challenges. IEEE Trans. Transp. Electr. 4(1), 3-37 (2018) https://doi.org/10.1109/TTE.2017.2780627
- Zhu, Q., Zhang, Y., Liao, C., Guo, Y., Wang, L., Li, F.: Experimental study on asymmetric wireless power transfer system for electric vehicle considering ferrous chassis. IEEE Trans. Transp. Electr. 3(2), 427-433 (2017) https://doi.org/10.1109/TTE.2016.2638641
- Huang, M., Lu, Y., Martins, R.P.: A reconfigurable bidirectional wireless power transceiver for battery-to-battery wireless charging. IEEE Trans. Power Electron. 34(8), 7745-7753 (2019) https://doi.org/10.1109/TPEL.2018.2881285
- Jeong, S., Jang, Y.J., Kum, D., Lee, M.S.: Charging automation for electric vehicles: is a smaller battery good for the wireless charging electric vehicles? IEEE Trans. Autom. Sci. Eng. 16(1), 486-497 (2019) https://doi.org/10.1109/TASE.2018.2827954
- Patnaik, L., Praneeth, A.V.J.S., Williamson, S.S.: A closed-loop constant-temperature constant-voltage charging technique to reduce charge time of lithium-ion batteries. IEEE Trans. Ind. Electron. 66(2), 1059-1067 (2019) https://doi.org/10.1109/TIE.2018.2833038
- Deng, Q., Li, Z., Liu, J., Li, S., Czarkowski, D., Kazimierczuk, M.K., Zhou, H., Hu, W.: Multi-inverter phase-shifted control for IPT with overlapped transmitters. IEEE Trans. Power Electron. 36(8), 8799-8811 (2021) https://doi.org/10.1109/TPEL.2021.3052232
- Li, Y., Hu, J., Li, X., Chen, F., Xu, Q., Mai, R., He, Z.: Analysis, design, and experimental verification of a mixed high-order compensations-based WPT system with constant current outputs for driving multistring LEDs. IEEE Trans. Ind. Electron. 67(1), 203-213 (2020) https://doi.org/10.1109/TIE.2019.2896255
- Vu, V.-B., Tran, D.-H., Choi, W.: Implementation of the constant current and constant voltage charge of inductive power transfer systems with the double-sided LCC compensation topology for electric vehicle battery charge applications. IEEE Trans. Power Electron. 33(9), 7398-7410 (2018) https://doi.org/10.1109/TPEL.2017.2766605
- Wang, C., Zhu, C., Song, K., Wei, G., Dong, S., Lu, R. G.: Primary- side control method in two-transmitter inductive wireless power transfer systems for dynamic wireless charging applications. Proc. IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), 1-6 (2017)
- Song, K., Li, Z., Jiang, J., Zhu, C.: Constant current/voltage charging operation for series-series and series-parallel compensated wireless power transfer systems employing primary-side controller. IEEE Trans. Power Electron. 33(9), 8065-8080 (2018)
- Hatchavanich, N., Sangswang, A., Konghirun, M.: Secondary-side voltage control via primary-side controller for wireless EV chargers. IEEE Access. 8, 203543-203554 (2020) https://doi.org/10.1109/ACCESS.2020.3036542
- Boys, J.T., Covic, G.A., Xu, Y.: DC analysis technique for inductive power transfer pick-ups. IEEE Power Electron. Lett. 1(2), 51-53 (2003) https://doi.org/10.1109/LPEL.2003.819909
- Li, Z., Zhu, C., Jiang, J., Song, K., Wei, G.: A 3-kW wireless power transfer system for sightseeing car supercapacitor charge. IEEE Trans. Power Electron. 32(5), 3301-3316 (2017) https://doi.org/10.1109/TPEL.2016.2584701
- Diekhans, T., de Doncker, R.W.: A dual-side controlled inductive power transfer system optimized for large coupling factor variations and partial load. IEEE Trans. Power Electron. 30(11), 6320-6328 (2015) https://doi.org/10.1109/TPEL.2015.2393912
- Si, P., Hu, A.P., Malpas, S., Budgett, D.: A frequency control method for regulating wireless power to implantable devices. IEEE Trans. Biomed. Circuits Syst. 2(1), 22-29 (2008) https://doi.org/10.1109/TBCAS.2008.918284
- Fu, M., Ma, C., Zhu, X.: A cascaded boost-buck converter for high-efficiency wireless power transfer systems. IEEE Trans. Industr. Inform. 10(3), 1972-1980 (2014) https://doi.org/10.1109/TII.2013.2291682
- Qu, X., Yao, Y., Wang, D., Wong, S.-C., Tse, C.K.: A family of hybrid IPT topologies with near load-independent output and high tolerance to pad misalignment. IEEE Trans. Power Electron. 35(7), 6867-6877 (2020) https://doi.org/10.1109/TPEL.2019.2955299
- Li, Y., Liu, S., Zhu, X., Hu, J., Zhang, M., Mai, R., He, Z.: Extension of ZVS region of series-series WPT systems by an auxiliary variable inductor for improving efficiency. IEEE Trans. Power Electron. 36(7), 7513-7525 (2021) https://doi.org/10.1109/TPEL.2020.3042011
- Zhang, Y., Kan, T., Yan, Z., Mao, Y., Wu, Z., Mi, C.C.: Modeling and analysis of series-none compensation for wireless power transfer systems with a strong coupling. IEEE Trans. Power Electron. 34(2), 1209-1215 (2019) https://doi.org/10.1109/TPEL.2018.2835307
- Hu, A. P.: Modeling a contactless power supply using GSSA method. Proc. IEEE International Conference on Industrial Technology, 1-6 (2009)
- Xia, C., Sun, Q., Li, X., Hu, A.P.: Robust μ-synthesis control of dual LCL type IPT system considering load and mutual inductance uncertainty. IEEE Access. 7, 72770-72782 (2019) https://doi.org/10.1109/ACCESS.2019.2920411
- Berger, M., Kocar, I., Fortin-Blanchette, H., Lavertu, C.: Hybrid average modeling of three-phase dual active bridge converters for stability analysis. IEEE Trans. Power Deliv. 33(4), 2020-2029 (2018) https://doi.org/10.1109/TPWRD.2018.2817878