DOI QR코드

DOI QR Code

Junction temperature estimation approach based on TSEPs in multichip IGBT modules

  • Yang, Jianxiong (School of Electrical and Information Engineering, Tianjin University) ;
  • Che, Yanbo (School of Electrical and Information Engineering, Tianjin University) ;
  • Ran, Li (School of Engineering, University of Warwick) ;
  • Hu, Borong (Department of Engineering, University of Cambridge) ;
  • Du, Mingxing (School of Electrical and Electronic Engineering, Tianjin University of Technology)
  • Received : 2022.02.06
  • Accepted : 2022.05.11
  • Published : 2022.09.20

Abstract

Power semiconductor chips are parallelly packed in modules to achieve a specific current capacity and power level. An inhomogeneous degradation of the solder layer makes the junction temperature between chips unevenly distributed in multichip modules. The real matters of the junction temperature represented by the terminal electrical characteristics are not known when a junction temperature difference occurs in the internal chip of a multichip IGBT module. This paper analyzes the electrothermal coupling characteristics among the chips in multichip modules and establishes a mathematical model of the electrothermal relationship. To accurately control the different temperature distributions and uneven aging conditions of paralleled chips, two power modules or two discrete devices packaged in a TO-247 are connected in parallel to simulate a multichip power module. The correctness of the proposed electrothermal model and the feasibility of simulating multichip modules are verified through experiments. The findings indicate that the temperature evaluated by the threshold voltage approaches the maximum temperature of the chips inside the module. The junction temperature evaluated by the maximum change rate of the collector-emitter voltage and that of the collector current approach are used to obtain the average temperature.

Keywords

Acknowledgement

This work was supported by Tianjin postgraduate research and innovation project 2020 (2020YJSB007). Thank Ahian-dipe Boris very much for helping us correct the language mistakes and flaws in the paper.

References

  1. He, X.N., Wang, R.C., Wu, J.D., et al.: Info character of power electronic conversion and control with power discretization to digitization then intelligentization. Proc. CSEE 40(5), 1579-1587 (2020)
  2. Chen, X.X., Liu, J.J., Deng, Z.F., et al.: A diagnosis strategy for multiple IGBT open-circuit faults of modular multilevel converters. IEEE Trans. Power Elec. 36(1), 191-203 (2021) https://doi.org/10.1109/TPEL.2020.2997963
  3. Hakim, T., Cherifa, T., Mohamed, B., et al.: Experimental investigation of NBTI degradation in power VDMOS transistors under low magnetic field. IEEE Trans. Devi. Mater. Reliab. 17(1), 99-105 (2017) https://doi.org/10.1109/TDMR.2017.2666260
  4. Ninoslav, S., Danijel, D., Ivica, M., et al.: Impact of negative bias temperature instabilities on lifetime in p-channel power VDMOSFETs. In: 2007 8th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services (2007)
  5. Snezana, M.D., Ivica, D., et al.: Annealing of radiation-induced defects in burn-in stressed power VDMOSFETs. Nuclear Tech. Rad. Prot. 26(1), 18-24 (2011) https://doi.org/10.2298/NTRP1101018D
  6. Dupont, L., Avenas, Y., Jeannin, P.: Comparison of junction temperature evaluations in a power IGBT module using an IR camera and three thermosensitive electrical parameters. IEEE Trans. Ind. Appl. 49(4), 1599-1608 (2013) https://doi.org/10.1109/TIA.2013.2255852
  7. Yang, S.Y., Xiang, D.W., Bryant, A., et al.: Condition monitoring for device reliability in power electronic converters: a review. IEEE Trans. Power Electon. 25(11), 2734-2752 (2011)
  8. Yang, S.Y., Bryant, A., Mawby, P., et al.: An industry-based survey of reliability in power electronic converters. IEEE Trans. Ind. Appl. 47(3), 1441-1451 (2011) https://doi.org/10.1109/TIA.2011.2124436
  9. Fabis, P.M., Shum, D., Windischmann, H.: Thermal modeling of diamond-based power electronics packaging. In: Fifteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (1999)
  10. Chen, Y., Lei, G.Y., Lu, G.Q., et al.: "High-temperature characterizations of a half-Bridge wire-bondless SiC MOSFET module. IEEE J. Electron Dev. Soc. 9, 966-971 (2021) https://doi.org/10.1109/JEDS.2021.3119428
  11. Li, J.M., Zhou, Y.G., Qi, Y.D., et al.: In-situ measurement of junction temperature and light intensity of light emitting diodes with an internal sensor unit. IEEE Electron Dev. Lett. 36(10), 1082-1084 (2015) https://doi.org/10.1109/LED.2015.2471801
  12. Soldati, A., Delmonte, N., Cova, P., et al.: Device-sensor assembly FEA modeling to support kalman-filter-based junction temperature monitoring. IEEE J. Emerg. Select. Top. Power Electron. 7(3), 1736-1747 (2019) https://doi.org/10.1109/JESTPE.2019.2922939
  13. Baker, N., Dupont, L., Nielsen, S.M., et al.: IR camera validation of IGBT junction temperature measurement via peak gate current. IEEE Trans. Power Electron 32(4), 3099-3111 (2017) https://doi.org/10.1109/TPEL.2016.2573761
  14. Eleffendi, M.A., Johnson, M.: Application of kalman filter to estimate junction temperature in IGBT power modules. IEEE Trans. Power Electron 31(2), 1576-1587 (2016) https://doi.org/10.1109/TPEL.2015.2418711
  15. Hu, Z., Du, M.X., Wei, K.X., et al.: An adaptive thermal equivalent circuit model for estimating the junction temperature of IGBTs. IEEE J. Emerg. Select. Top. Power Electron. 7(1), 392- 403 (2019) https://doi.org/10.1109/JESTPE.2018.2796624
  16. Avenas, Y., Dupont, L., Khatir, Z.: Temperature measurement of power semiconductor devices by thermo-sensitive electrical parameters: a review. IEEE Trans. Power Electron 27(6), 3081- 3092 (2012) https://doi.org/10.1109/TPEL.2011.2178433
  17. Chen, M., Hu, A., Tang, Y., et al.: Modeling analysis of IGBT thermal model. High Volt. Eng. 37(2), 453-459 (2011)
  18. Sun, P., Zhao, Z., Cai, Y., et al.: Analytical model for predicting the junction temperature of chips considering the internal electrothermal coupling inside SiC metal-oxide-semiconductor fieldeffect transistor modules. IET Power Electron. 13(3), 436-444 (2020) https://doi.org/10.1049/iet-pel.2019.0588
  19. Liu, J.C., Zhang, G.G., Chen, Q., et al.: In situ condition monitoring of IGBTs based on the miller plateau duration. IEEE Trans. Power Electron. 34(1), 769-782 (2019)
  20. Bryant, A., Yang, S.Y., Mawby, P.: Investigation into IGBT dV/ dt during turn-off and its temperature dependence. IEEE Trans. Power Electron. 26(10), 3019-3031 (2011) https://doi.org/10.1109/TPEL.2011.2125803
  21. Xu, Z.X., Xu, F., Wang, F.: Junction temperature measurement of IGBTs using short-circuit current as a temperature-sensitive electrical parameter for converter prototype evaluation. IEEE Trans. Ind. Electron. 62(6), 3419-3429 (2015) https://doi.org/10.1109/TED.2015.2470118
  22. Luo, H.Z., Chen, Y.X., Sun, P.F., et al.: Junction temperature extraction approach with turn-off delay time for high-voltage high-power IGBT modules. IEEE Trans. Power Electron. 31(7), 5122-5132 (2016)
  23. Zeng, G., Cao, H., Chen, W., et al.: Difference in device temperature determination using p-n-junction forward voltage and gate threshold voltage. IEEE Trans. Power Electron. 34(3), 2781-2793 (2019) https://doi.org/10.1109/TPEL.2018.2842459
  24. Baker, N., Iannuzzo, F.: The temperature dependence of the flatband voltage in high power IGBTs. IEEE Trans. Ind. Electron. 66(7), 5581-5584 (2019) https://doi.org/10.1109/TIE.2018.2854568
  25. Baker, N., Munk-Nielsen, S., Iannuzzo, F., et al.: IGBT junction temperature measurement via peak gate current. IEEE Trans. Power Electron. 31(5), 3784-3793 (2016) https://doi.org/10.1109/TPEL.2015.2464714
  26. Peralta, J., Saad, H., Dennetiere, S., et al.: Detailed and averaged models for a 401-Level MMC-HVDC system. IEEE Trans. Power Del. 27(3), 1501-1508 (2012) https://doi.org/10.1109/TPWRD.2012.2188911
  27. Hu, B.R., Hu, Z.D., Ran, L., et al.: Heat-flux-based condition monitoring of multichip power modules using a two-stage neural network. IEEE Trans. Power Electron. 36(7), 7489-7500 (2021) https://doi.org/10.1109/TPEL.2020.3045604
  28. Guo, Y.X., Wang, X.M., Zhang, B.: Improved IGBT module junction- temperature extraction algorithm and experiment. J. Power Supply 19(1), 205-214 (2021)
  29. Lai, W., Chen, M.Y., Ran, L., et al.: Small junction temperature cycles on die-attach solder layer in IGBT. In: 2015 17th European Conference on Power Electronics and Applications (2015)
  30. Yang, J.X., Che, Y.B., Ran, L., et al.: Evaluation of frequency and temperature dependence of power losses difference in parallel IGBTs. IEEE Access 8, 104074-104084 (2020) https://doi.org/10.1109/ACCESS.2020.2995971