DOI QR코드

DOI QR Code

PV fed front-end isolated voltage multiplier converter for of grid EV charging infrastructure

  • Raizada, Shirish (Department of Electrical Engineering, Delhi Technological University) ;
  • Verma, Vishal (Department of Electrical Engineering, Delhi Technological University)
  • Received : 2021.12.08
  • Accepted : 2022.05.09
  • Published : 2022.09.20

Abstract

A novel current fed isolated voltage multiplier converter (IVMC) exhibiting fast dynamics and high efficiency with seamless interfacing of low voltage PV panel with a high voltage DC bus is presented in the paper. The proposed converter exhibits interleaving for a quantifiable reduction in the input current ripple and input filter size while ensuring the superior performance of the maximum power point tracking (MPPT) controller. The low turn ratio of the high-frequency transformer incorporated into the IVMC allows for galvanic isolation along with lower leakage inductance. The distributed architecture of the IVMC facilitates a reduction in the voltage ripple across the multiplier capacitors and proportionally distributes the voltage gain among the different stages. Furthermore, it creates parallel conduction paths, which reduces the conduction losses in the devices and magnetic components. The scalability and modularity of the IVMC make it suitable for front-end PV applications where multiple front-end converters are interfaced to an intermediate DC bus for EV charging infrastructure. The performance of a hardware prototype of a PV fed IVMC under insolation variation is investigated through the MATLAB simulation environment and validated experimentally.

Keywords

References

  1. Ibrahim, S.A., Nasr, A., Enany, M.A.: Maximum power point tracking using ANFIS for a reconfigurable PV-based battery charger under non-uniform operating conditions. IEEE Access. 9, 114457-114467 (2021) https://doi.org/10.1109/ACCESS.2021.3103039
  2. Ali, A., et al.: Investigation of MPPT techniques under uniform and non-uniform solar irradiation condition-a retrospection. IEEE Access. 8, 127368-127392 (2020) https://doi.org/10.1109/ACCESS.2020.3007710
  3. Zhang, X., et al.: Novel high step-up soft-switching DC-DC converter based on switched capacitor and coupled inductor. IEEE Trans. Power Electron. 35(9), 9471-9481 (2020) https://doi.org/10.1109/TPEL.2020.2972583
  4. Forouzesh, M., Siwakoti, Y.P., Gorji, S.A., Blaabjerg, F., Lehman, B.: Step-Up DC-DC converters a comprehensive review of voltage-boosting techniques, topologies, and applications. IEEE Trans. Power Electron. 32(12), 9143-9178 (2017) https://doi.org/10.1109/TPEL.2017.2652318
  5. Liu, H., Zhang, D.: Two-phase interleaved inverse-coupled inductor boost without right half-plane zeros. IEEE Trans. Power Electron. 32(3), 1844-1859 (2017) https://doi.org/10.1109/TPEL.2016.2565723
  6. Ding, J., Zhao, S., Gao, S., Yin, H.: A single-switch high step-up DC-DC converter based on three-winding coupled inductor and pump capacitor unit. IEEE Trans. Power Electron. 37(3), 3053-3061 (2022) https://doi.org/10.1109/TPEL.2021.3113255
  7. Luo, F.L., Ye, H.: Super-lift boost converters. IET Power Electron. 7(7), 1655-1664 (2014) https://doi.org/10.1049/iet-pel.2012.0531
  8. Rezaie, M., Abbasi, V.: Ultrahigh Step-Up DC-DC converter composed of two stages boost converter, coupled inductor, and multiplier cell. IEEE Trans. Ind. Electron. 69(6), 5867-5878 (2022) https://doi.org/10.1109/TIE.2021.3091916
  9. Guepfrih, M.F., Waltrich, G., Lazzarin, T.B.: High Step-Up DC-DC converter using built-in transformer voltage multiplier cell and dual boost concepts. IEEE J. Emerg. Selected Topics Power Electron. 9(6), 6700-6712 (2021) https://doi.org/10.1109/JESTPE.2021.3063060
  10. Kothapalli, K.R., Ramteke, M.R., Suryawanshi, H.M., Reddi, N.K., Kalahasthi, R.B.: Soft-switched ultrahigh gain DC-DC converter with voltage multiplier Cell for DC microgrid. IEEE Trans. Ind. Electron. 68(11), 11063-11075 (2021) https://doi.org/10.1109/TIE.2020.3031453
  11. Schmitz, L., Martins, D.C., Coelho, R.F.: Comprehensive conception of high step-up DC-DC converters with coupled inductor and voltage multipliers techniques. IEEE Trans. Circuits Syst. I. 67(6), 2140-2151 (2020) https://doi.org/10.1109/TCSI.2020.2973154
  12. Alghaythi, M.L., O'Connell, R.M., Islam, N.E., Khan, M.M.S., Guerrero, J.M.: A high step-up interleaved DC-DC converter with voltage multiplier and coupled inductors for renewable energy systems. IEEE Access. 8, 123165-123174 (2020) https://doi.org/10.1109/ACCESS.2020.3007137
  13. Zhang, Z., Liao, M., Jiang, D., Yang, X., Li, S.: High step-up isolated forward-flyback DC/DC converter based on resonance with pulse frequency modulation. J. Power Electron. 21(2), 483-493 (2021) https://doi.org/10.1007/s43236-020-00186-5
  14. Wu, Q., Wang, Q., Xu, J., Xiao, L.: A wide load range ZVS push- Pull DC/DC converter with active clamped. IEEE Trans. Power Electron. 32(4), 2865-2875 (2017) https://doi.org/10.1109/TPEL.2016.2577639
  15. Sha, D., Xu, Y., Zhang, J., Yan, Y.: Current-fed hybrid dual active bridge DC-DC converter for a fuel cell power conditioning system with reduced input current ripple. IEEE Trans. Ind. Electron. 64(8), 6628-6638 (2017) https://doi.org/10.1109/TIE.2017.2698376
  16. Le, T.-T., Kim, S., Choi, S.: A four-phase current-fed push-pull DAB converter for wide-voltage-range applications. IEEE Trans. Power Electron. 36(10), 11383-11396 (2021) https://doi.org/10.1109/TPEL.2021.3069964
  17. Wu, Q., Wang, Q., Xu, J., Xu, Z.: Active-clamped ZVS currentfed push-pull isolated dc/dc converter for renewable energy conversion applications. IET Power Electron. 11(2), 373-381 (2018) https://doi.org/10.1049/iet-pel.2017.0144
  18. Li, C., et al.: Design and implementation of a bidirectional isolated Cuk converter for low-voltage and high-current automotive DC source applications. IEEE Trans. Vehicular Technol. 63(6), 2567-2577 (2014) https://doi.org/10.1109/TVT.2013.2294599
  19. Pandey, R., Singh, B.: A power-factor-corrected LLC resonant converter for electric vehicle charger using Cuk converter. IEEE Trans. Ind. Appl. 55(6), 6278-6286 (2019) https://doi.org/10.1109/TIA.2019.2934059
  20. Kong, X., Khambadkone, A.M.: Analysis and implementation of a high efficiency, interleaved current-fed full bridge converter for fuel cell system. IEEE Trans. Power Electron. 22(2), 543-550 (2007) https://doi.org/10.1109/TPEL.2006.889985