DOI QR코드

DOI QR Code

Subgingival microbiome in periodontitis and type 2 diabetes mellitus: an exploratory study using metagenomic sequencing

  • Lu, Xianjun (Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology) ;
  • Liu, Tingjun (Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology) ;
  • Zhou, Jiani (Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology) ;
  • Liu, Jia (Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology) ;
  • Yuan, Zijian (Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology) ;
  • Guo, Lihong (Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology)
  • Received : 2021.06.09
  • Accepted : 2021.12.23
  • Published : 2022.08.31

Abstract

Purpose: To explore differences in the subgingival microbiome according to the presence of periodontitis and/or type 2 diabetes mellitus (T2D), a metagenomic sequencing analysis of the subgingival microbiome was performed. Methods: Twelve participants were divided into 4 groups based on their health conditions (periodontitis, T2D, T2D complicated with periodontitis, and generally healthy). Subgingival plaque was collected for metagenomic sequencing, and gingival crevicular fluids were collected to analyze the concentrations of short-chain fatty acids. Results: The shifts in the subgingival flora from the healthy to periodontitis states were less prominent in T2D subjects than in subjects without T2D. The pentose and glucuronate interconversion, fructose and mannose metabolism, and galactose metabolism pathways were enriched in the periodontitis state, while the phosphotransferase system, lipopolysaccharide (LPS) and peptidoglycan biosynthesis, bacterial secretion system, sulfur metabolism, and glycolysis pathways were enriched in the T2D state. Multiple genes whose expression was upregulated from the red and orange complex bacterial genomes were associated with bacterial biofilm formation and pathogenicity. The concentrations of propionic acid and butyric acid were significantly higher in subjects with periodontitis, with or without T2D, than in healthy subjects. Conclusions: T2D patients are more susceptible to the presence of periodontal pathogens and have a higher risk of developing periodontitis. The pentose and glucuronate interconversion, fructose and mannose metabolism, galactose metabolism, and glycolysis pathways may represent the potential microbial functional association between periodontitis and T2D, and butyric acid may play an important role in the interaction between these 2 diseases. The enrichment of the LPS and peptidoglycan biosynthesis, bacterial secretion system, and sulfur metabolism pathways may cause T2D patients to be more susceptible to periodontitis.

Keywords

Acknowledgement

This work was funded by a grant from the National Natural Science Foundation of China to Lihong Guo (number: 81670982). The funding body had no influence on the study design, the data collection, analysis, or interpretation, or the writing of the manuscript.

References

  1. Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol 2018;16:745-59. https://doi.org/10.1038/s41579-018-0089-x
  2. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr. Microbial complexes in subgingival plaque. J Clin Periodontol 1998;25:134-44. https://doi.org/10.1111/j.1600-051X.1998.tb02419.x
  3. Preshaw PM, Alba AL, Herrera D, Jepsen S, Konstantinidis A, Makrilakis K, et al. Periodontitis and diabetes: a two-way relationship. Diabetologia 2012;55:21-31. https://doi.org/10.1007/s00125-011-2342-y
  4. Borrell LN, Kunzel C, Lamster I, Lalla E. Diabetes in the dental office: using NHANES III to estimate the probability of undiagnosed disease. J Periodontal Res 2007;42:559-65. https://doi.org/10.1111/j.1600-0765.2007.00983.x
  5. Loos BG. Systemic markers of inflammation in periodontitis. J Periodontol 2005;76:2106-15. https://doi.org/10.1902/jop.2005.76.11-S.2106
  6. Rotter V, Nagaev I, Smith U. Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-alpha, overexpressed in human fat cells from insulin-resistant subjects. J Biol Chem 2003;278:45777-84. https://doi.org/10.1074/jbc.M301977200
  7. Salvi GE, Yalda B, Collins JG, Jones BH, Smith FW, Arnold RR, et al. Inflammatory mediator response as a potential risk marker for periodontal diseases in insulin-dependent diabetes mellitus patients. J Periodontol 1997;68:127-35. https://doi.org/10.1902/jop.1997.68.2.127
  8. D'Aiuto F, Sabbah W, Netuveli G, Donos N, Hingorani AD, Deanfield J, et al. Association of the metabolic syndrome with severe periodontitis in a large U.S. population-based survey. J Clin Endocrinol Metab 2008;93:3989-94. https://doi.org/10.1210/jc.2007-2522
  9. Shi B, Lux R, Klokkevold P, Chang M, Barnard E, Haake S, et al. The subgingival microbiome associated with periodontitis in type 2 diabetes mellitus. ISME J 2020;14:519-30. https://doi.org/10.1038/s41396-019-0544-3
  10. Farina R, Severi M, Carrieri A, Miotto E, Sabbioni S, Trombelli L, et al. Whole metagenomic shotgun sequencing of the subgingival microbiome of diabetics and non-diabetics with different periodontal conditions. Arch Oral Biol 2019;104:13-23. https://doi.org/10.1016/j.archoralbio.2019.05.025
  11. Zhou M, Rong R, Munro D, Zhu C, Gao X, Zhang Q, et al. Investigation of the effect of type 2 diabetes mellitus on subgingival plaque microbiota by high-throughput 16S rDNA pyrosequencing. PLoS One 2013;8:e61516.
  12. Kuntal BK, Chandrakar P, Sadhu S, Mande SS. 'NetShift': a methodology for understanding 'driver microbes' from healthy and disease microbiome datasets. ISME J 2019;13:442-54. https://doi.org/10.1038/s41396-018-0291-x
  13. Sakanaka A, Kuboniwa M, Hashino E, Bamba T, Fukusaki E, Amano A. Distinct signatures of dental plaque metabolic byproducts dictated by periodontal inflammatory status. Sci Rep 2017;7:42818.
  14. Settem RP, El-Hassan AT, Honma K, Stafford GP, Sharma A. Fusobacterium nucleatum and Tannerella forsythia induce synergistic alveolar bone loss in a mouse periodontitis model. Infect Immun 2012;80:2436-43. https://doi.org/10.1128/IAI.06276-11
  15. Taylor JJ, Preshaw PM, Lalla E. A review of the evidence for pathogenic mechanisms that may link periodontitis and diabetes. J Clin Periodontol 2013;40 Suppl 14:S113-34. https://doi.org/10.1111/jcpe.12059
  16. Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis. Nat Rev Microbiol 2012;10:717-25. https://doi.org/10.1038/nrmicro2873
  17. Sultana ST, Call DR, Beyenal H. Eradication of Pseudomonas aeruginosa biofilms and persister cells using an electrochemical scaffold and enhanced antibiotic susceptibility. NPJ Biofilms Microbiomes 2016;2:2.
  18. Hsaine S, Fethi FZ, Charof R, Ounine K. Microbiological study of oral flora in diabetic patients with gingivitis. Int J Pharm Pharm Sci 2018;10:113.
  19. Bhavsar MV, Brahmbhatt NA, Sahayata V, Bhavsar NV. Gingival crevicular blood for screening of blood glucose level in patients with & without diabetes: a chair-side test. Int J Dent Hyg 2016;14:92-7. https://doi.org/10.1111/idh.12139
  20. Gray LR, Tompkins SC, Taylor EB. Regulation of pyruvate metabolism and human disease. Cell Mol Life Sci 2014;71:2577-604. https://doi.org/10.1007/s00018-013-1539-2
  21. Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 2009;58:1509-17. https://doi.org/10.2337/db08-1637
  22. Rathinam VA, Zhao Y, Shao F. Innate immunity to intracellular LPS. Nat Immunol 2019;20:527-33. https://doi.org/10.1038/s41590-019-0368-3
  23. Pfannkuch L, Hurwitz R, Traulsen J, Sigulla J, Poeschke M, Matzner L, et al. ADP heptose, a novel pathogen-associated molecular pattern identified in Helicobacter pylori. FASEB J 2019;33:9087-99. https://doi.org/10.1096/fj.201802555R
  24. Pandolfi F, Altamura S, Frosali S, Conti P. Key role of DAMP in inflammation, cancer, and tissue repair. Clin Ther 2016;38:1017-28. https://doi.org/10.1016/j.clinthera.2016.02.028
  25. Green ER, Mecsas J. Bacterial secretion systems: an overview. Microbiol Spectr 2016;4:4.1.13.
  26. Heinz E, Selkrig J, Belousoff MJ, Lithgow T. Evolution of the translocation and assembly module (TAM). Genome Biol Evol 2015;7:1628-43. https://doi.org/10.1093/gbe/evv097
  27. Torresyap G, Haffajee AD, Uzel NG, Socransky SS. Relationship between periodontal pocket sulfide levels and subgingival species. J Clin Periodontol 2003;30:1003-10. https://doi.org/10.1034/j.1600-051X.2003.00377.x
  28. Chi XP, Ouyang XY, Wang YX. Hydrogen sulfide synergistically upregulates Porphyromonas gingivalis lipopolysaccharide-induced expression of IL-6 and IL-8 via NF-κB signalling in periodontal fibroblasts. Arch Oral Biol 2014;59:954-61. https://doi.org/10.1016/j.archoralbio.2014.05.022
  29. Holland IB. The extraordinary diversity of bacterial protein secretion mechanisms. Methods Mol Biol 2010;619:1-20. https://doi.org/10.1007/978-1-60327-412-8_1
  30. Wang S, Heng BC, Qiu S, Deng J, Shun Pan Cheung G, Jin L, et al. Lipoteichoic acid of Enterococcus faecalis inhibits osteoclastogenesis via transcription factor RBP-J. Innate Immun 2019;25:13-21. https://doi.org/10.1177/1753425918812646
  31. Jung S, Park OJ, Kim AR, Ahn KB, Lee D, Kum KY, et al. Lipoteichoic acids of lactobacilli inhibit Enterococcus faecalis biofilm formation and disrupt the preformed biofilm. J Microbiol 2019;57:310-5. https://doi.org/10.1007/s12275-019-8538-4
  32. Lee JC, Stewart GC. Essential nature of the mreC determinant of Bacillus subtilis. J Bacteriol 2003;185:4490-8. https://doi.org/10.1128/JB.185.15.4490-4498.2003
  33. Okamoto M, Maeda N, Kondo K, Leung KP. Hemolytic and hemagglutinating activities of Prevotella intermedia and Prevotella nigrescens. FEMS Microbiol Lett 1999;178:299-304. https://doi.org/10.1111/j.1574-6968.1999.tb08691.x
  34. Leung K, Nesbitt WE, Okamoto M, Fukushima H. Identification of a fimbriae-associated haemagglutinin from Prevotella intermedia. Microb Pathog 1999;26:139-48. https://doi.org/10.1006/mpat.1998.0258
  35. Kesavalu L, Holt SC, Ebersole JL. In vitro environmental regulation of Porphyromonas gingivalis growth and virulence. Oral Microbiol Immunol 2003;18:226-33. https://doi.org/10.1034/j.1399-302X.2003.00071.x
  36. Anderson GG, Yahr TL, Lovewell RR, O'Toole GA. The Pseudomonas aeruginosa magnesium transporter mgtE inhibits transcription of the type III secretion system. Infect Immun 2010;78:1239-49. https://doi.org/10.1128/IAI.00865-09
  37. Coffey BM, Akhand SS, Anderson GG. MgtE is a dual-function protein in Pseudomonas aeruginosa. Microbiology (Reading) 2014;160:1200-13. https://doi.org/10.1099/mic.0.075275-0
  38. Reyes-Soffer G, Ginsberg HN, Ramakrishnan R. The metabolism of lipoprotein (a): an ever-evolving story. J Lipid Res 2017;58:1756-64. https://doi.org/10.1194/jlr.R077693
  39. Shinagawa H, Shiba T, Iwasaki H, Makino K, Takahagi M, Nakata A. Properties of the Escherichia coli RuvA and RuvB proteins involved in DNA repair, recombination and mutagenesis. Biochimie 1991;73:505-7. https://doi.org/10.1016/0300-9084(91)90120-P
  40. Estevao S, Sluijter M, Hartwig NG, van Rossum AM, Vink C. Functional characterization of the RuvB homologs from Mycoplasma pneumoniae and Mycoplasma genitalium. J Bacteriol 2011;193:6425-35. https://doi.org/10.1128/JB.06003-11