DOI QR코드

DOI QR Code

Exposure to polycyclic aromatic hydrocarbons and serum total IgE in the Korean adults: the Third Korean National Environmental Health Survey (2015-2017)

  • Jeong Hun Jo (Department of Occupational and Environmental Medicine, Inje University Haeundae Paik Hospital) ;
  • Dae Hwan Kim (Department of Occupational and Environmental Medicine, Inje University Haeundae Paik Hospital) ;
  • Ji Young Ryu (Department of Occupational and Environmental Medicine, Inje University Haeundae Paik Hospital)
  • Received : 2022.08.05
  • Accepted : 2022.11.15
  • Published : 2022.12.31

Abstract

Background: Polycyclic aromatic hydrocarbons (PAHs) have become common pollutants with industrial development. Although the effect of exposure to PAHs on allergic disease in humans has been evaluated, evidence of an association is sparse. The association between PAH exposure and serum total immunoglobulin E (IgE) levels was evaluated in Korean adults. Methods: In total, this study included 3,269 participants in the Third Korean National Environmental Health Survey (2015-2017). Four urinary PAH metabolites were used to assessed exposure to PAHs: 1-hydroxypyrene, 1-hydroxyphenanthrene, 2-naphthol, and 2-hydroxyfluorene. The analyses were performed on 3 cutoff levels (100 IU/mL, 114 IU/mL, and 150 IU/mL) set as the total IgE elevation. Prevalence of total IgE elevation by PAH exposure group and general characteristics (age, sex, BMI, smoking, alcohol drinking, and occupation) were analyzed using the Rao-Scott χ2 test. Multiple logistic regression analyses were conducted to calculate adjusted odds ratios (ORs) for total IgE elevation by PAH exposure groups. Results: Total IgE elevation differed significantly by age, sex, smoking status, alcohol drinking status, and occupation. For 2-hydroxyfluorene, the fourth quartile showed a significant association with IgE elevation compared to the first quartile in the analyses of cutoff-level 100 IU/mL (OR: 1.372, 95% confidence interval [CI]: 1.007-1.869) and 114 IU/mL (OR: 1.643, 95% CI: 1.167-2.312). In the analysis of cutoff-level 150 IU/mL, the adjusted ORs of the third and fourth quartile of 2-hydroxyfluorene were significantly higher than the first quartile (3rd quartile: OR: 1.478, 95% CI: 1.034-2.113; 4th quartile: OR: 1.715, 95% CI: 1.161-2.534). However, there were no significant positive associations for the other metabolites. Conclusions: This study implied that PAHs exposure is associated with total IgE elevation in Korean adults. More research is needed to confirm the effect of exposure to PAHs on serum IgE and allergic diseases.

Keywords

Acknowledgement

This study used data from the Third Korean National Environmental Health Survey (2015-2017), which was conducted by National Institute of Environmental Research. The Authors gratefully acknowledge their effort.

References

  1. Net S, El-Osmani R, Prygiel E, Rabodonirina S, Dumoulin D, Ouddane B. Overview of persistent organic pollution (PAHs, Me-PAHs and PCBs) in freshwater sediments from Northern France. J Geochem Explor 2015;148:181-8. https://doi.org/10.1016/j.gexplo.2014.09.008
  2. Sims RC, Overcash MR. Fate of polynuclear aromatic compounds (PNAs) in soil-plant systems. In: Gunther FA, editor. Residue Reviews. New York, NY: Springer New York; 1983, 1-68. 
  3. Cerniglia CE. Biodegradation of polycyclic aromatic hydrocarbons. Curr Opin Biotechnol 1993;4(3):331-8. https://doi.org/10.1016/0958-1669(93)90104-5
  4. Maliszewska-Kordybach B. Sources, concentrations, fate and effects of polycyclic aromatic hydrocarbons (PAHs) in the environment. Part A: PAHs in air. Pol J Environ Stud 1999;8(3):131-6. 
  5. Pufulete M, Battershill J, Boobis A, Fielder R. Approaches to carcinogenic risk assessment for polycyclic aromatic hydrocarbons: a UK perspective. Regul Toxicol Pharmacol 2004;40(1):54-66. https://doi.org/10.1016/j.yrtph.2004.04.007
  6. Falco G, Domingo JL, Llobet JM, Teixido A, Casas C, Muller L. Polycyclic aromatic hydrocarbons in foods: human exposure through the diet in Catalonia, Spain. J Food Prot 2003;66(12):2325-31. https://doi.org/10.4315/0362-028X-66.12.2325
  7. Agency for Toxic Substances and Disease Registry. What is the biological fate of the PAHs in the body? https://www.atsdr.cdc.gov/csem/polycyclic-aromatic-hydrocarbons/biological_fate.html. Updated 2013. Accessed September 19, 2022. 
  8. Li Z, Romanoff L, Bartell S, Pittman EN, Trinidad DA, McClean M, et al. Excretion profiles and half-lives of ten urinary polycyclic aromatic hydrocarbon metabolites after dietary exposure. Chem Res Toxicol 2012;25(7):1452-61. https://doi.org/10.1021/tx300108e
  9. Min YS, Lim HS, Kim H. Biomarkers for polycyclic aromatic hydrocarbons and serum liver enzymes. Am J Ind Med 2015;58(7):764-72. https://doi.org/10.1002/ajim.22463
  10. Boffetta P, Jourenkova N, Gustavsson P. Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons. Cancer Causes Control 1997;8(3):444-72. https://doi.org/10.1023/A:1018465507029
  11. Armstrong BH, Fletcher T. Cancer risk following exposure to polycyclic aromatic hydrocarbon (PAHs): a meta-analysis. https://www.hse.gov.uk/research/rrhtm/rr068.htm. Updated 2003. Accessed July 15, 2022. 
  12. Shiue I. Are urinary polyaromatic hydrocarbons associated with adult hypertension, heart attack, and cancer? USA NHANES, 2011-2012. Environ Sci Pollut Res Int 2015;22(21):16962-8. https://doi.org/10.1007/s11356-015-4922-8
  13. Choi H, Jedrychowski W, Spengler J, Camann DE, Whyatt RM, Rauh V, et al. International studies of prenatal exposure to polycyclic aromatic hydrocarbons and fetal growth. Environ Health Perspect 2006;114(11):1744-50. https://doi.org/10.1289/ehp.8982
  14. Perera FP, Li Z, Whyatt R, Hoepner L, Wang S, Camann D, et al. Prenatal airborne polycyclic aromatic hydrocarbon exposure and child IQ at age 5 years. Pediatrics 2009;124(2):e195-202. https://doi.org/10.1542/peds.2008-3506
  15. Schober W, Lubitz S, Belloni B, Gebauer G, Lintelmann J, Matuschek G, et al. Environmental polycyclic aromatic hydrocarbons (PAHs) enhance allergic inflammation by acting on human basophils. Inhal Toxicol 2007;19 Suppl 1:151-6. https://doi.org/10.1080/08958370701496046
  16. Cacciola RR, Sarva M, Polosa R. Adverse respiratory effects and allergic susceptibility in relation to particulate air pollution: flirting with disaster. Allergy 2002;57(4):281-6. https://doi.org/10.1034/j.1398-9995.2002.1r3315.x
  17. Patel MM, Miller RL. Air pollution and childhood asthma: recent advances and future directions. Curr Opin Pediatr 2009;21(2):235-42. https://doi.org/10.1097/MOP.0b013e3283267726
  18. Li Y, Wang W, Kan H, Xu X, Chen B. Air quality and outpatient visits for asthma in adults during the 2008 Summer Olympic Games in Beijing. Sci Total Environ 2010;408(5):1226-7. https://doi.org/10.1016/j.scitotenv.2009.11.035
  19. Li C, Fu J, Sheng G, Bi X, Hao Y, Wang X, et al. Vertical distribution of PAHs in the indoor and outdoor PM2.5 in Guangzhou, China. Build Environ 2005;40(3):329-41. https://doi.org/10.1016/j.buildenv.2004.05.015
  20. Li S, Wu W, Wang G, Zhang X, Guo Q, Wang B, et al. Association between exposure to air pollution and risk of allergic rhinitis: a systematic review and meta-analysis. Environ Res 2022;205:112472.
  21. Rosser F, Han YY, Forno E, Celedon JC. Urinary polycyclic aromatic hydrocarbons and allergic sensitization in a nationwide study of children and adults in the United States. J Allergy Clin Immunol 2018;142(5):1641-1643.e6. https://doi.org/10.1016/j.jaci.2018.07.002
  22. Kang SY, Song WJ, Cho SH, Chang YS. Time trends of the prevalence of allergic diseases in Korea: a systematic literature review. Asia Pac Allergy 2018;8(1):e8.
  23. Kim YY. Past, present, and future of allergy in Korea. Allergy Asthma Immunol Res 2010;2(3):155-64. https://doi.org/10.4168/aair.2010.2.3.155
  24. Kim SY, Yoon SJ, Jo MW, Kim EJ, Kim HJ, Oh IH. Economic burden of allergic rhinitis in Korea. Am J Rhinol Allergy 2010;24(5):e110-3. https://doi.org/10.2500/ajra.2010.24.3513
  25. Strickland P, Kang D, Sithisarankul P. Polycyclic aromatic hydrocarbon metabolites in urine as biomarkers of exposure and effect. Environ Health Perspect 1996;104 Suppl 5(Suppl 5):927-32. https://doi.org/10.1289/ehp.96104s5927
  26. Platts-Mills TA. The role of immunoglobulin E in allergy and asthma. Am J Respir Crit Care Med 2001;164(8 Pt 2):S1-5. https://doi.org/10.1164/ajrccm.164.supplement_1.2103024
  27. Zetterstom O, Johansson SG. IgE concentrations measured by PRIST in serum of healthy adults and in patients with respiratory allergy. A diagnostic approach. Allergy 1981;36(8):537-47. https://doi.org/10.1111/j.1398-9995.1981.tb01871.x
  28. Chung D, Park KT, Yarlagadda B, Davis EM, Platt M. The significance of serum total immunoglobulin E for in vitro diagnosis of allergic rhinitis. Int Forum Allergy Rhinol 2014;4(1):56-60. https://doi.org/10.1002/alr.21240
  29. Barr DB, Wilder LC, Caudill SP, Gonzalez AJ, Needham LL, Pirkle JL. Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements. Environ Health Perspect 2005;113(2):192-200. https://doi.org/10.1289/ehp.7337
  30. Diaz-Sanchez D. The role of diesel exhaust particles and their associated polyaromatic hydrocarbons in the induction of allergic airway disease. Allergy 1997;52(38 Suppl):52-6. https://doi.org/10.1111/j.1398-9995.1997.tb04871.x
  31. Mastrangelo G, Veller Fornasa C, Pavanello S, Mercer G, Lazzaro M, Milan G, et al. Polyaromatic hydrocarbons administered in humans by dermal route increase total IgE. Int J Immunopathol Pharmacol 2003;16(2):145-50. https://doi.org/10.1177/039463200301600208
  32. Diaz-Sanchez D, Dotson AR, Takenaka H, Saxon A. Diesel exhaust particles induce local IgE production in vivo and alter the pattern of IgE messenger RNA isoforms. J Clin Invest 1994;94(4):1417-25. https://doi.org/10.1172/JCI117478
  33. Mastrangelo G, Clonfero E, Pavanello S, Fedeli U, Fadda E, Turato A, et al. Exposure to diesel exhaust enhances total IgE in non-atopic dockers. Int Arch Occup Environ Health 2003;76(1):63-8. https://doi.org/10.1007/s00420-002-0373-x
  34. Miller RL, Garfinkel R, Lendor C, Hoepner L, Li Z, Romanoff L, et al. Polycyclic aromatic hydrocarbon metabolite levels and pediatric allergy and asthma in an inner-city cohort. Pediatr Allergy Immunol 2010;21(2 Pt 1):260-7. https://doi.org/10.1111/j.1399-3038.2009.00980.x
  35. Takafuji S, Suzuki S, Koizumi K, Tadokoro K, Miyamoto T, Ikemori R, et al. Diesel-exhaust particulates inoculated by the intranasal route have an adjuvant activity for IgE production in mice. J Allergy Clin Immunol 1987;79(4):639-45. https://doi.org/10.1016/S0091-6749(87)80161-6
  36. Diaz-Sanchez D, Tsien A, Fleming J, Saxon A. Combined diesel exhaust particulate and ragweed allergen challenge markedly enhances human in vivo nasal ragweed-specific IgE and skews cytokine production to a T helper cell 2-type pattern. J Immunol 1997;158(5):2406-13. https://doi.org/10.4049/jimmunol.158.5.2406
  37. Penning TM. Human aldo-keto reductases and the metabolic activation of polycyclic aromatic hydrocarbons. Chem Res Toxicol 2014;27(11):1901-17. https://doi.org/10.1021/tx500298n
  38. Jeng HA, Pan CH, Diawara N, Chang-Chien GP, Lin WY, Huang CT, et al. Polycyclic aromatic hydrocarbon-induced oxidative stress and lipid peroxidation in relation to immunological alteration. Occup Environ Med 2011;68(9):653-8. https://doi.org/10.1136/oem.2010.055020
  39. Vattanasit U, Navasumrit P, Khadka MB, Kanitwithayanun J, Promvijit J, Autrup H, et al. Oxidative DNA damage and inflammatory responses in cultured human cells and in humans exposed to traffic-related particles. Int J Hyg Environ Health 2014;217(1):23-33. https://doi.org/10.1016/j.ijheh.2013.03.002
  40. Vogel CF, Van Winkle LS, Esser C, Haarmann-Stemmann T. The aryl hydrocarbon receptor as a target of environmental stressors - implications for pollution mediated stress and inflammatory responses. Redox Biol 2020;34:101530.
  41. Rothhammer V, Quintana FJ. The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and disease. Nat Rev Immunol 2019;19(3):184-97. https://doi.org/10.1038/s41577-019-0125-8
  42. Wei P, Hu GH, Kang HY, Yao HB, Kou W, Liu H, et al. Increased aryl hydrocarbon receptor expression in patients with allergic rhinitis. QJM 2014;107(2):107-13. https://doi.org/10.1093/qjmed/hct188
  43. Zhu J, Cao Y, Li K, Wang Z, Zuo P, Xiong W, et al. Increased expression of aryl hydrocarbon receptor and interleukin 22 in patients with allergic asthma. Asian Pac J Allergy Immunol 2011;29(3):266-72.
  44. Mizutani N, Nabe T, Ohtani Y, Han HY, Fujii M, Yoshino S, et al. Polycyclic aromatic hydrocarbons aggravate antigen-induced nasal blockage in experimental allergic rhinitis. J Pharmacol Sci 2007;105(3):291-7. https://doi.org/10.1254/jphs.FP0071067
  45. Liu H, Xu C, Jiang ZY, Gu A. Association of polycyclic aromatic hydrocarbons and asthma among children 6-19 years: NHANES 2001-2008 and NHANES 2011-2012. Respir Med 2016;110:20-7. https://doi.org/10.1016/j.rmed.2015.11.003
  46. Huang X, Zhou Y, Cui X, Wu X, Yuan J, Xie J, et al. Urinary polycyclic aromatic hydrocarbon metabolites and adult asthma: a case-control study. Sci Rep 2018;8(1):7658.
  47. Jongeneelen FJ. Methods for routine biological monitoring of carcinogenic PAH-mixtures. Sci Total Environ 1997;199(1-2):141-9. https://doi.org/10.1016/S0048-9697(97)00064-8
  48. Koh DH, Park JH, Lee SG, Kim HC, Choi S, Jung H, et al. Comparison of polycyclic aromatic hydrocarbons exposure across occupations using urinary metabolite 1-hydroxypyrene. Ann Work Expo Health 2020;64(4):445-54. https://doi.org/10.1093/annweh/wxaa014
  49. Baumann S, Lorentz A. Obesity - a promoter of allergy? Int Arch Allergy Immunol 2013;162(3):205-13. https://doi.org/10.1159/000353972
  50. Bell RG. IgE, allergies and helminth parasites: a new perspective on an old conundrum. Immunol Cell Biol 1996;74(4):337-45. https://doi.org/10.1038/icb.1996.60