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Abstract 
 
Underwater images usually have various problems, such as the color cast of underwater 
images due to the attenuation of different lights in water, the darkness of image caused by the 
lack of light underwater, and the haze effect of underwater images because of the scattering of 
light. To address the above problems, the channel attention mechanism, 
strengthen-operate-subtract (SOS) boosting mechanism and gated fusion module are 
introduced in our paper, based on which, an underwater image recovery network is proposed. 
First, for the color cast problem of underwater images, the channel attention mechanism is 
incorporated in our model, which can well alleviate the color cast of underwater images. 
Second, as for the darkness of underwater images, the similarity between the target underwater 
image after dehazing and color correcting, and the image output by our model is used as the 
loss function, so as to increase the brightness of the underwater image. Finally, we employ the 
SOS boosting module to eliminate the haze effect of underwater images. Moreover, 
experiments were carried out to evaluate the performance of our model. The qualitative 
analysis results show that our method can be applied to effectively recover the underwater 
images, which outperformed most methods for comparison according to various criteria in the 
quantitative analysis. 
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1. Introduction 

During continuous explorations of the ocean, the mankind needs to obtain related data of the 
ocean, while the underwater images are an indispensible source of information. During this 
process, it is essential to detect the underwater environment by using an underwater optical 
imaging system. However, the underwater environment is very complicated in general, 
involving various factors, such as lack of light, diverse types of water bodies and suspended 
impurities in water. All these factors will significantly affect the results of underwater 
imaging. As a result, the images captured underwater generally have the problems of low 
contrast, color distortion and lack of illumination. Therefore, how to effectively process the 
underwater images has become a popular research subject recently. 

At present, researchers try to process the underwater target images mainly using the 
following three types of methods. The first type is the enhancement method for underwater 
images, which mainly includes methods such as white balance and histogram equalization. 
The second type is the recovery method for underwater images, which mainly involves the 
optical model of underwater images, and the imaging model of underwater image is used for 
inference, so as to recover the underwater image. The third type is the deep learning method, 
and with the development of deep learning in recent years, it has played an increasingly more 
important role  in image processing. 

These methods have achieved great performances in improving the visual effects of 
underwater images. However, there are still some problems in the underwater images restored 
by these methods. For example, color distortion tends to be generated when the underwater 
images are processed by using the conventional methods. In the meantime, the conventional 
methods generally have poor robustness, so they may have good performance in recovering 
some images, while showing poor performance in processing some other images. On the other 
hand, the deep learning method has poor haze removal ability when processing the underwater 
images, and it is also difficult to obtain paired datasets. Therefore, the underwater image 
datasets are mostly synthetic. For example, Fabbri et al. utilized GAN to generate paired 
underwater image datasets, and in recent years, many researchers have used these datasets to 
train their networks. We also trained our network using these synthetic datasets. 

In this paper, to address various problems of underwater image, such as low brightness, 
haze effect and color distortion, a deep learning model is designed, which combines the 
attention mechanism, SOS boosting module and gated fusion module. Moreover, the 
exponentiated mean local variance, dehazing and color correcting methods are introduced as 
the loss function of this model, so as to further improve the quality of underwater images. Our 
goal is not only to maintain the texture and details of the underwater image, but also to 
improve its brightness and contrast. Fig. 1 shows the underwater images restored by using our 
method, from which it can be seen that our method can improve the visual effects of the 
underwater images. 
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Fig. 1. Underwater images recovered with our method. The original image (top) and the recovered by 

our method (bottom). 
 
The contributions of this paper are as follows: 

(1) The channel attention mechanism is applied to process the underwater images, and we also 
made improvement to this mechanism for our research. The channel attention mechanism is 
combined with the SOS boosting module to dehaze the underwater images. In the meantime, 
the dilated convolution and gated fusion modules are also incorporated to further improve the 
recovery effectiveness of underwater images. 
(2) By using the exponentiated mean local variance as the loss function of model, the 
denoising of underwater images is carried out while also keeping the edge details of 
underwater images. 
(3) Because the underwater images are dark, the similarity between the underwater target 
image after dehazing and color correction and the image output by our model is used as the 
loss function, through which the brightness of the underwater image can be improved. 
(4) The experimental results show that the method proposed in this paper can improve the 
visual effects of the underwater images, and the evaluation indexes adopted in this work 
include the underwater image quality measurement (UIQM), structural similarity index 
measurement (SSIM) and peak signal-to-noise ratio (PSNR). 

This paper is structured as follows. Section 2 is a brief introduction of related works. The 
network architecture and loss function are elaborated in Section 3, which also describes the 
implementation of the algorithm. The qualitative and quantitative analyses are carried out in 
Section 4, and Section 5 draws conclusions of our work and presents possible future work. 

2. Related Works 
At current stage, many researchers are investigating the process of underwater images. 

The methods for processing underwater images include the restoration of underwater images 
with the optical model, the enhancement of underwater images not using any optical model 
and the processing of underwater images based on deep learning. Related works of these three 
methods are summarized as follows. 

2.1 Studies on the recovery of underwater images based on the optical model 
Because the underwater images tend to have haze effect, the land defogging model was 
directly applied to dehaze the underwater images in the early works on recovery of underwater 
images. The obtained underwater image recovery model is as shown in Equation (1). 
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( ( )) ( ( )) ( )c c c c cA I x A J x t x− = −                                    (1) 

where, A is the background light, c represents the three color channels of red, green and blue, 
I(x) is the observed image, J(x) is the image that needs to be recovered, and t(x) is the 
transmission map of underwater image.  

In Equation (1), the most critical step is to obtain the transmission map of the underwater 
image. For estimating the transmission map of underwater image, Chao et al. [1] calculated the 
transmission map of underwater image using the dark channel prior method proposed by He et 
al., and then combined the dehazing model in Equation (1) to recover the underwater images. 
This method fails to consider the attenuation rates of different lights in the underwater images, 
so the estimated underwater images tend to involve serious color distortions. On the basis of 
the dark channel theory, Song et al. [2] proposed a new method for estimating the transmission 
map, which is named the new dark channel prior (NUDCP). Zhou et al.[3] modified the model 
on the basis of the scene depth map, and their method can be used to estimate the transmission 
map of underwater image. Because the attenuation of red light is very significant in 
underwater image, the estimated red-channel image involves serious deviation. In the 
meantime, during calculation of the transmission map, the background light and other 
parameters of underwater image need to be estimated, while the estimation of these parameters 
is very difficult. Therefore, these methods present low robustness during the recovery of 
underwater images, and have poor performance in processing some underwater images. 

2.2 Enhancement of underwater images without the optical model 
The enhancement methods for underwater images without the optical model mainly include 
the histogram prior, Retinex and fusion method. For example, Hummel et al. [4] proposed the 
histogram equalization (HE) method for process of the underwater images. Zuiderveld et al. 
improved the HE method, and proposed the contrast limited adaptive histogram equalization 
(CLAHE) method [5] to process the underwater images. The images restored by directly using 
the above methods usually have various defects, such as color distortion, high image noise, 
haze effect and low contrast. Zhang et al. utilized the Retinex theory for processing of 
underwater images [6], and the brightness and color components are filtered by a bilateral 
filter and a trilateral filter, which can effectively inhibit halos and artifacts. Ancuti [7] 
proposed the fusion method to process the underwater images. These methods can 
significantly improve the contrast and saturation of underwater images, which also have 
relatively higher scores in qualitative evaluation of images, but the images processed by these 
methods have big noises. Even though these methods can achieve enhancement of underwater 
images in a certain degree, most of them can only achieve simple color corrections without 
effectively removing the haze effects of underwater images due to failure to consider the 
optical characteristics of underwater images.  

2.3 Studies on the processing of underwater images based on deep learning 
At present, CNN (convolutional neural network) and GAN (generative adversarial network) 
are mainly used to process the underwater images. For example, Li et al. [8] and Anwar et al. 
[9] utilized CNN to process the underwater images. However, these network architectures 
involve many training parameters. Fu et al. [10] proposed a light weight global-local (G-L)  
network in 2020, which is a two-branch network to compensate for the global distorted color 
and local reduced contrast, respectively. At current stage, many researchers have employed 
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GAN for processing of the underwater images. For example, Chen et al. [11] adopted GAN 
and combined it with the conventional method to improve the qualities of the recovered 
underwater images to a certain extent. Liu et al. [12] integrated the optical model and GAN  for 
underwater image processing. Zhou et al. [13] introduced the domain adaptive mechanism and 
optical model constraint feedback control to process the underwater images. Even though the 
above methods can effectively process the underwater images, they still have certain 
problems, such as darkness of the obtained underwater images, and color noise introduced to 
the generated image. 

3. Proposed Method 
By combining the strengthen-operate-subtract (SOS) boosting module, the channel attention 
mechanism and the gated fusion module, this paper presents a Unet architecture. The 
experimental results prove that this architecture is applicable to dehazing of underwater 
images. The "Strengthen-Operate- Subtract" enhancement method is integrated to the decoder 
of our model, which is inspired by the Multi-Scale Boosted Dehazing Network [14]. This is a 
simple but effective enhanced decoder, which can recover the underwater images step by step. 
We also improved the channel attention mechanism. Our method is to obtain the mean value 
and standard deviation of RGB channels of the image first, and then feed the obtained mean 
value and standard deviation to the fully-connected network. Then, the output of the 
fully-connected network is added to the average value of the original image to obtain a new 
average value, which is used as the result of channel attention. Because dilated convolution 
can cover more adjacent pixels, we adopt dilated convolution smoothing to reduce the 
meshing artifacts. Finally, we use the gated subnet to determine the importance of different 
levels of feature maps, and integrate them according to their corresponding importance 
weights. See Fig. 2 for the specific network architecture, which mainly consists of the three 
parts of encoder, the boosted decoder and the gated fusion module. 

 
Fig. 2. Underwater images recovered with our method. 

3.1 SOS Boosting Module 
Romano et al. [15] initially proposed the SOS boosting module for image denoising, and its 
equation is as follows: 
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n 1 n nS g(I S ) S+ = + −                                                 (2) 
where, Sn is the image prediction result of the n-th iteration, g(.) is the dehazing operation of 
underwater image, and I + Sn represents the strengthened image by I with haze effect. PoH(.) 
is defined as: 

 
o ( ) (1 ) /SP StH A= −                                                   (3) 

In 2020, Dong et al. [14] used the SOS boosting module to defog images, and proved that this 
algorithm can improve the defogging performance in theory. 

n 1 no ( ) o ( )P H S P H S+ <                                                (4) 
In the specific network architecture, we mainly extract the features of underwater images with 
the encoder, and remove the haze effect of underwater images with the decoder. According to 
the characteristics of the underwater images, we integrate the channel attention mechanism to 
the SOS Boosting Module. Its equation is as follows: 

 1 1
2 2s ( ( ) ) ( )n n n n n

nG i s sδ
+ += + ↑ − ↑                         (5) 

where, ↑2 represent upsampling, n
nGδ represents the recovery unit, and in each recovery unit, 

the residual network architecture with channel attention mechanism is adopted. Its 
implementation process is as follows. First, the upsampling of feature map sn+1 obtained in 
the previous layer is carried out, and then it is added to the feature map obtained by encoder in. 
Next, the final output is obtained by subtracting the upsampling of feature map sn+1 from the 

n
nGδ  function. The network architecture of n

nGδ  function is a residual group with the channel 
attention mechanism. At the last layer of the decoder, we adopt a convolutional layer plus the 
Sigmoid activation function. 

3.2 Channel attention module 
Because the underwater image has different attenuations in different channels, and the three 
channels of RGB (red, green and blue) have certain connections, we mainly focus on the 
relationship among these channels, and hope the model can automatically learn the importance 
of different channel features. To this end, we improved the Squeeze and Excitation (SE) 
module. The channel attention module in this paper is as shown in Fig. 3. We conduct squeeze 
operation of the underwater image first to obtain the channel-level global features, and then 
get the average (Avg) value and standard deviation (Std) of the feature maps of the RGB 
channels. See Equation (6) for details. 

1 ( ( ( ( ) ( )))F Relu MLP Cat Avg F Std F= ，                       (6) 
 
where, MLP represents full connection, and Cat represents concatenation operation. 
According to Equations (6)-(8), the relationship among various channels is learned via three 
full connections.  

 
 



2558                                                                                                Li et al.: Recovery of underwater images based on 
 the attention mechanism and SOS mechanism 

 

 
Fig. 3. Channel attention module 

 
Finally, a new mean value is obtained by adding the final fully connected output to the original 
mean value. With such attention mechanism, the model will focus on the underwater image 
features containing more information, while ignoring less important features. In the meantime, 
this module also has general features, and is embedded into the SOS boosting module. 

1( ( ))2F Relu MLP F=                                               (7)  

 1ˆ J 2 Iμ Sigmoid(MLP(Cat(F ,F ) μ )= +                                       (8) 
 
 

3.3 Gated fusion module 
In this paper, the gated fusion module is used to control the weights of different feature maps. 
We extract feature maps F1, F2 and F3 first, and then feed these three feature maps to the gated 
fusion module, as shown in Equation (9). 

),,(),,( 321321 FFFGateWWW =                                               (9) 
The weights (W1, W2, W3) of these three feature maps are obtained from the gated fusion 
module. Finally, the weights obtained from the gated fusion module are multiplied by 
corresponding feature maps to obtain the new feature map, as shown in Equation (10). 

332211 *** FWFWFWFo ++=     (10) 
In this paper, our gated fusion module is inspired by the method of Chen et al. [16]-[17]. 

Feature maps F1, F2 and F3 are input into the gated fusion module, and finally, the output Fo is 
obtained after fusion of the gated fusion module. The input underwater image is encoded into 
feature maps via 4 convolutional modules and 3 residual groups with channel attention 
mechanism. And, feature mapping is downsampled to 1/16 of the size of input image. 
Symmetrically, the convolutional layer and SOS boosting module are used to upsample the 
feature maps to the original size of underwater image. In the residual group of network, we 
introduce the channel attention mechanism, and use the smoothing dilated convolutional layer 
to replace the regular convolutional layer. The dilation rate for the middle residual block is set 
as (2, 2, 2, 4, 4, 4, 1). We set the channel number of all middle convolutional layers at 256. 

3.4 Loss function 
The loss function consists of four parts, as shown in Equation (11): 

 

Mean

Var

FC FC FC
  Cat Cat

Input channel feature 
Feature attention 
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1l 1 2 ssim 3 4oss L smoothdcL L L L Lλ λ λ λ= + + +                                 (11) 

where, λ1, λ2, λ3 and λ4 are the weights of various loss functions. 
1). The first term is the L1 loss function, which can be used to limit the similarity between the 
target image and the image output by the model. See Equation (12) for specific information: 

1 1
( )L c cL J M I= −                                        (12) 

where, J represents the target image, I stands for the original underwater image, and M(I) 
represents the image recovered by the model. 

2). Lssim is the structural similarity loss function. We choose the structural similarity loss 
function to measure the similarity between the image output by model and the target image in 
structure. 

ssim 1 ( , ( ))GTL SSIM J M I= −                                (13) 
3). The third term is the exponentiated mean local variance deviation. See Equation (14) for 
specific information. ε is a very small number, and this number is used to avoid being divided 
by 0. ∇x/y represents the operator used to obtain the gradients of recovered underwater image 
in the horizontal and vertical directions [18][19][20]. The size of ω local block is r×r, and r is 
set as 3 in this paper.  ηs is the exponent that determines the sensitivity to the gradient of J , and 
we set ηs=1.2. 

2 21 1

2 2

( ) 1 1s s

s x x y yE J J J J J
η η

ω ω
ε ε

ω ω

− −
   
   =
   
   

∇ ∇ + + ∇ ∇ +∑ ∑                (14) 

The gradient feature is expressed by the local variation, and its deviation indicates the 
variation correlation in the local patch. ηs is a single exponential used to alter the structure and 
texture awareness of an underwater image. The smoothness of the underwater image is 
affected by this value. Because the local variance information is taken into consideration, the 
exponentiated mean local variance can better present the details and retain the structure. As a 
result, the capacity of the mean local variance to discriminate texture and structure is quite 
high. 
4). The fourth term is a dehazing and color correcting loss function. 

                    
1

( )( )dc
dc
cL J M Ix= −                                           (15) 

This loss function measures the similarity between the image output by network and the target 
image after dehazing and color correction. ( )dc

cJ x  represents the target image after  

dehazing and color correction[21].  First, we obtain the mean value mean
cJ  and standard 

deviation ( )std
cJ x  of three channels, as shown in Equation (16), where, J represents the target 

image, and µ represents a constant, which is set to 2.5 in this paper. 
 

        
max mean

min mean

( ) ( ) ( )
( ) ( ) ( )

std
c c c

std
c c c

J x x J J x
J x J x J x

µ

µ

 = +


= −
                                   (16) 

The above equation can be used to obtain the maximum and minimum values, which are 
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substituted into Equation (17) to obtain the image cor ( )cJ x  after color correction.  

 
min

cor
max min

( ) ( )( ) 255
( ) ( )

c c
c

c c

J x J xJ x
J x J x

−
=

−
                                          (17) 

Then, ( )dc
cJ x  is obtained by dehazing ( )cor

cJ x  using the dark channel prior method [22]. 

4. Experimental results and analysis 

In this part, the effectiveness of this network is evaluated via experiments, which mainly 
includes introduction of the training platform, description of the training datasets, the ablation 
study, as well as the quantitative and qualitative analyses of the underwater images obtained 
by different methods. The methods to be compared with ours: Haze Line [23], NUDCP [2], 
Fusion [7], UWCNN [8], UGAN [24], FUnIE-GAN [25] and G-L [10]. Because the training 
sets used in Fu’s model are basically the same as the training sets in this paper, we did not train 
their network, and directly used the trained model they provided to test the underwater images. 

4.1 Training datasets and experimental setting 
Network training set: Dataset has a significant influence on the results obtained by deep 
learning. In this paper, we mainly use three datasets. One is the Li’s dataset [8], which consists 
of 800 images in total, 720 images were used for training, and the rest 80 were for verifying the 
results. The second dataset is the Fabbri’s dataset [24], which includes 6128 images. This 
dataset was synthesized on the basis of Cycle GAN, 4902 images from this dataset were used 
for data training in our experiments, and the rest 800 were used for verification. The third 
dataset is the enhancing underwater visual perception (EUVP) dataset [25], which was 
synthesized on the basis of the UGAN. We choose two directories under this dataset. In one 
directory, the target image data comes from ImageNet, which is named as EUVP_1, 2960 
images in this directory were used for training, and 740 were for test. In another directory, the 
target image data comes from the underwater scenes, which is named as EUVP_2, and there 
are 2185 images under this directory, 1748 of which were used for training, and the rest 437 
were for test. 
Setting of training parameters: All images were resized to 256×256×3 for training, and the 
parameters were λ1=λ2=1, λ3=0.5, λ4=0.05. The training iterations were 80 (100 iterations were 
trained in the dataset of Li), and the learning rate was 0.0001. The experiments were carried 
out on a PC equipped with Intel (R) i9-12900KF processor, and an NVIDIA GTX 3080Ti 
GPU. 

4.2 Qualitative comparison 
Next, we compare the visual effects of underwater images obtained by different methods. In 
the meantime, to verify the robustness of the model proposed in this paper, we also compare 
and analyze the processing effects of various methods on real-world underwater images. Some 
of these images are collected by Li et al. [26], and some are from other datasets such as the 
underwater color cast set (UCCS) [27]. 
Qualitative comparison on the Li’s dataset: In Li’s dataset, we randomly choose two 
images for qualitative comparison, and see Fig. 4 for specific information. From left to right: 
the original images, the images obtained with the Haze-line, Fusion, NUDCP, UWCNN, 
UGAN, FUnIE-GAN, G-L and our method, and the ground-truth images. According to Fig. 4, 
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due to inaccurate estimation of transmission map, the images obtained with the conventional 
methods tend to have color cast. The recovered images by the Haze-line method are dark, and 
most details of image are covered. Some images processed with the Fusion methods show 
reddish color, while the NUDCP methods have weak dehazing ability. The methods based on 
deep learning can generally provide good performances in processing underwater images, but 
these methods still have some defects. For instance, the images obtained with the UWCNN 
and Fu’s method have relatively poor visual effects, and the images are dark in general. The 
methods based on FUnIE-GAN and UGAN can get good results of underwater images, but the 
images tend to have color cast, and are not very similar to the GT target images. In 
comparison, the images recovered with our method show great quality in terms of color, 
brightness and contrast. 
Qualitative comparison on the Fabbri’s dataset: In the Fabbri’s dataset, we also choose two 
images as the references for qualitative comparison. See Fig. 5 for the specific comparison 
results. From left to right: the original images, the images obtained with the Haze-line, Fusion, 
NUDCP, UWCNN, UGAN, FUnIE-GAN, G-L and our method, and the ground-truth images. 
According to the images in Fig. 5, The color of images restored by the haze-line method shows 
obvious distortion, while the images obtained by the UGAN method tend to introduce external 
color noise. In addition, compared with the GT target images, the images obtained by the 
FUnIE-GAN and Fu’s method show low structural similarity.  
 

 

 
Fig. 4. Images obtained using different methods on the Li’s dataset. 

 

 

 
Fig. 5. Images obtained using different methods on the Fabbri’s dataset. 

 

 

 
Fig. 6. Images obtained using different methods on EUVP_1 dataset. 

 

 

 
Fig. 7. Images obtained using different methods on EUVP_2 dataset. 
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Because we have introduced the SOS boosting module to dehaze the underwater images, the 
images recovered with our method show high structural similarity to the GT target images, and 
they also have better visual effects than the images obtained with other methods. 
Qualitative comparison on the EUVP dataset: For images in the dataset directories of 
EUVP_1 and EUVP_2, the visual results are presented in Fig. 6 and Fig. 7, respectively. From 
left to right: the original images, the images obtained with the Haze-line, Fusion, NUDCP, 
UWCNN, UGAN, FUnIE-GAN, G-L and our method, and the ground-truth images. The 
images under the two directories have very similar characteristics, so we analyze these two 
directories together. According to Fig. 6 and Fig. 7, the images recovered with the Haze-line 
method also have low brightness and reddish color, and some images recovered with NDCP 
also show color cast. The deep learning methods do not present significant difference in visual 
effects in processing images in these two directories. In comparison, we have introduced the 
channel attention mechanism and the loss functions, which can help improve the brightness of 
underwater images and address the color cast problem of underwater images. 
 

a  

b  

c  

d  

e  
Fig. 8. Images obtained using different methods on the real-world underwater images. 

 
Qualitative comparison on the real-world underwater scenes data: In addition to 
comparison and analysis on the training sets, we also conducted tests on some public images in 
order to verify the robustness and adaptation of the proposed model, and these images were 
collected from the Internet and sorted out by Li et al. 

See Fig. 8 for the specific comparative results. From left to right: the original images, the 
images obtained with the Haze-line, Fusion, NUDCP, UWCNN, UGAN, FUnIE-GAN, G-L 
and our method. We can see that the images obtained with the conventional methods have poor 
performances, which still have the color cast problem and poor overall dehazing effects. For 
example, among the images recovered by the Haze-line method, the image in Fig. 8 (a) is 
greenish, while those in Fig. 8 (b) and Fig. 8 (e) are darker. The images recovered by the 
method of Song et al. are reddish, and according to the images recovered with this method in 
Fig. 8 (a), Fig. 8 (c) and Fig. 8 (d), the dehazing effects of this method are also poor. The deep 
learning methods can provide better dehazing performances, but tend to introduce color cast. 
For instance, after being processed with the UGAN and FUGAN methods, the images in Fig. 
8(a) and Fig. 8(e) present color cast. Furthermore, the deep learning methods, including Fu’s 
method and Li’s method, have relatively poor dehazing performances. Overall, the images 
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recovered with our method not only have better visual effects, but also better dehazing 
performances than other methods. 
Qualitative comparison on the UCCS dataset: This dataset consists of 300 images in total, 
including the underwater images with different degradation types. We compare the results of 
processing the images from this dataset using different methods, and the results are shown in 
Fig. 9. From left to right: the original images, the images obtained with the Haze-line, Fusion, 
NUDCP, UWCNN, UGAN, FUnIE-GAN, G-L and our method.  
 

a  

b  

c  

d  

e  
Fig. 9. Images obtained using different methods on the UCCS dataset. 

 

Through comparison and analysis, we can see that the improvement by the conventional 
methods is relatively poor, and the obtained images have serious color cast. In comparison, the 
deep learning methods have much better performances on the improvement of colors, so they 
have stronger robustness and adaptation than the conventional methods. However, some of the 
deep learning methods still have some problems in processing these underwater images. For 
example, the methods of Li et al. and Fu et al. have relatively weak performances, and some 
details of the images cannot be well detected. The images processed with the UGAN and 
FUGAN methods are very clear, but these images tend to introduce external noises and 
generate color cast. Yet, the proposed method in this paper has achieved great performances in 
terms of contrast and brightness. Compared with other methods, our method has stronger 
robustness and adaptation ability. 

 

4.3 Quantitative comparison 
Since subjective evaluation is based on observation, it tends to be affected by personal factors. 
To further evaluate the proposed algorithm, we also conduct quantitative evaluation.  
Comparison in terms of PSNR and SSIM: These are full-reference image quality criteria. 
Table 1 reports the Peak Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM) 
values of images obtained with different methods on Fabbri’s dataset, Li’s dataset, EUVP_1 
and EUVP_2, in which, the score in bold font represents the optimal value achieved on this 
criterion.  
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Table 1. PSNR and SSIM evaluation results of underwater images on the Fabbri’s dataset, Li’s dataset, 

EUVP_1 and EUVP_2. The best performances values are in bold. 
 

Methods Fabbri’s  Li’s   EUVP_1 EUVP_2  
Haze-line [23] 21.2465 / 0.5958 21.3901 / 0.6392 20.1828 / 0.5893 21.0490 / 0.5985 
NUDCP [2] 19.5184 / 0.6703 19.8471 / 0.6884 19.7038 / 0.6852 19.7554 / 0.6852 
Fusion [7] 21.2465 / 0.7196 21.3901 / 0.7761 20.1828 / 0.7221 21.0490 / 0.7149 
UWCNN [8] 19.5184 / 0.7512 19.8471 / 0.7551 19.7038 / 0.7129 19.7554 / 0.7523 
UGAN [24] 18.6496 / 0.6860 19.2363 / 0.7490 19.7770 / 0.6558 19.4072 / 0.6947 
FUnIE-GAN[25] 19.3247 / 0.7085 21.0145 / 0.6817 19.8879 / 0.6469 19.4227 / 0.7106 
G-L[10] 18.2640 / 0.7381 21.2474 / 0.8224 20.0884 / 0.7105 22.4449 / 0.7743 
ours 24.6645 / 0.8410 21.1002 / 0.8195 21.3009 / 0.7704 24.7011 / 0.8333 
 

As shown in Table 1, due to the introduced noise during processing, the images obtained 
by UGAN and UWCNN method have low PSNR. The images obtained by the G-L and our 
method show high scores in structural similarity, while those recovered with the NUDCP and 
Haze-line methods show low structural similarity. Our method achieves the best performances 
on both PSNR and SSIM. It has the best performance on the Fabbri’s dataset, and it achieves 
the mean PSNR of 24.6645, and the mean SSIM of 0.8410. According to the quantitative 
comparison on the other three datasets, it still outperforms the other methods. Because our 
method can effectively remove the haze effects of underwater images, which can help 
highlight the texture and details of image, it shows significant advantages in the quality 
evaluation based on SSIM and PSNR. 
Comparison in terms of UIQM and UCIQE: The underwater image quality measurement 
(UIQM) [28] and underwater color image quality evaluation (UCIQE) [29] are two 
no-reference image quality criteria. Generally speaking, higher UIQM and UCIQE values 
represent better quality of underwater images. Table 2 shows the UIQM values of underwater 
images on the Fabbri’s dataset, Li’s dataset, EUVP_1 and EUVP_2. According to Table 2, the 
conventional methods, including Haze-line, Fusion and NUDCP, have the lowest UIQM 
scores. According to the visual effect analysis in Section 4.2, we can see that the images 
obtained with the conventional methods have serious color cast and are darker, which results 
in low contrast. In the meantime, the texture details of these images are not rich, so the UIQM 
values are relatively low. The images obtained with our method and UGAN have higher 
UIQM values. For example, on the Fabbri’s dataset, Li’s dataset, EUVP_1 and EUVP_2, the 
UIQM values of underwater images obtained by our method are 3.0554, 3.1436, 3.0482 and 
3.1349, respectively. In the meantime, based on the qualitative analysis in Fig. 6, we can see 
that the G-L and UWCNN methods have weaker dehazing ability, and the images recovered by 
the two methods are also darker. Moreover, their texture details cannot be well presented, so 
the UIQM values are lower. Among the images obtained with the UGAN method, even though 
some color noises are introduced in some parts, they still have higher contrast according to the 
qualitative analysis, so their UIQM values are also higher. Introducing the loss function can 
help improve the contrast of underwater images. Therefore, our method has achieved high 
scores in UIQM. 

Table 2 shows the UCIQE values of the underwater images obtained by different 
methods. The scores in bold font represent the best results. According to Table 2, we can see 
that the conventional methods have good performances in UCIQE. The images recovered with 
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the Haze-line method have the highest UCIQE scores, while those obtained with the UWCNN 
method have the lowest UCIQE scores. The images obtained with other methods do not 
present much difference in the UCIQE value. However, according to the qualitative 
comparison results in Section 4.2, the images recovered by the Haze-line method have great 
performances on chroma and saturation, so they have the highest UCIQE scores. Yet, these 
images have serious color cast problem, and the texture details are not clear due to darkness of 
images. Therefore, we can infer that the UCIQE criterion does not consider color cast and 
other problems, so this criterion has certain defects [30]. At the same time, the underwater 
images restored by the deep learning methods are also affected by the training dataset. The 
datasets used for training in this paper are synthetic, which has a certain impact on the UICQE 
values of the restored images. 

 
Table 2. UIQM and UCIQE evaluation results of underwater images on the Fabbri’s dataset, Li’s 

dataset, EUVP_1 and EUVP_2. The best and second best performance values are in bold 
Methods Fabbri’s  Li’s  EUVP_1  EUVP_2  
Haze-line [23] 2.1622 / 0.6779 2.2990 / 0.6538 2.0979 / 0.6965 2.1635 / 0.6842 
NUDCP [2] 2.4082 / 0.6254 2.4414 / 0.6123 2.3888 / 0.6505 2.4888 / 0.6359 
Fusion[7] 2.8630 / 0.5915 2.9330 / 0.6017 2.8676 / 0.6129 2.8904 / 0.5998 
UWCNN [8] 2.9825 / 0.5440 3.0521 / 0.5478 2.9553 / 0.5644 3.0296 / 0.5516 
UGAN [24] 3.0900 / 0.6013 2.8990 / 0.6294 3.0841 / 0.6221 3.1547 / 0.6057 
FUnIE-GAN[25] 3.0197 / 0.6091 2.9316 / 0.6153 2.9316 / 0.6128 3.0278 / 0.6156 
G-L[10] 2.9404 / :0.6022 2.8843 / 0.6278 2.8961 / 0.6197 2.9690 / 0.6097 
ours 3.0554 / 0.5954 3.1436 / 0.6014 3.0482 / 0.6183 3.1349 / 0.6043 

 
Finally, we conduct quantitative analysis on the UCCS dataset [27] to verify the 

adaptation ability and robustness of our model. Because the dataset does not contain paired 
images, we only conduct analysis and test based on the two criteria of UIQM and UICQE. The 
UIQM and UICQE values of the images obtained with different methods are listed in Table 3. 
According to Table 3, the underwater images obtained with our method and Fu’s method have 
the higher UIQM scores, with the mean values of UIQM reaching 3.1313 and 3.1681, 
respectively. In comparison, the images obtained with the Haze-line and FUnIE-GAN method 
have lower UIQM scores. The underwater images obtained with the Haze-line and NUDCP 
methods have higher UCIQE scores, and their mean values are 0.6294 and 0.6203, 
respectively. However, with the defects of UCIQE criteria considered, and the qualitative 
comparison in Section 4.2 combined, our method has some advantages in improving the 
brightness of underwater images, keeping the texture details and achieving color balance. 
Therefore, our method outperforms the other algorithms on the basis of the comprehensive 
evaluation. 

 
 

Table 3. UIQM and UCIQE scores of images in the UCCS dataset by different methods. The best and 
second best performance values are in bold 

Methods H-Line NUDCP Fusion UWCNN UGAN FGAN G-L Ours 
UIQM 2.4331 3.1167 3.1214 2.8864 3.0310 3.0302 3.1681 3.1313 
UICQE 0.6294 0.6203 0.6041 0.5037 0.6061 0.5722 0.5944 0.5862 
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To sum it up, compared with the other seven methods, the underwater images recovered 
by our method have the highest scores of SSIM and PSNR. According to the qualitative 
analysis, these images also have higher brightness, contrast and saturation. Therefore, the 
model proposed in this paper can well improve the visual effects of underwater images. 

 

 

 

 

 
 

Fig. 10. Images recovered by different network architectures. From left to right: the original images, the 
images recovered without the attention mechanism, the SOS module, and the images recovered with the 

attention mechanism + SOS module. 

4.4 Ablation study 

4.4.1 Analysis on the influence of different network architectures 
According to Fig. 10, the images obtained by the network architecture without introducing the 
dehazing mechanism have strong haze effects. As shown in the third column of Fig. 10, the 
colors of images obtained by the architecture without introducing the attention mechanism are 
not balanced, and there is slight color cast. In comparison, after introducing the attention 
mechanism and dehazing mechanism, the haze effects of images can be more effectively 
removed, and the color cast is also alleviated.  

Table 4. SSIM and PSNR scores of images in Li’s dataset using different network architectures. 
 

Methods Without attention 
mechanism 

Without SOS With attention 
mechanism + SOS 

SSIM 0.7337 0.7545 0.8195 
PSNR 19.2162 20.4159 21.1002 
 

Table 4 shows the SSIM and PSNR scores of images in the Li's dataset obtained with 
different network architectures. Because the images in Li's dataset were captured from the 
real-world underwater scenes, we conducted ablation study on this dataset. According to 
Table 4, we can see that the images recovered by introducing the dehazing mechanism and 
attention mechanism have good performances in terms of SSIM and PSNR. Therefore, from 
both qualitative and quantitative perspectives, introduction of the attention mechanism and 
dehazing mechanism can help improve the visual effects and scores of the quantitative 
analysis indexes of the underwater images to a certain extent. 
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Fig. 11. Images recovered using different loss function. From left to right: the original images, images 
recovered With LL1+Lssim and with LL1+Lssim+Lsmooth +Lce, respectively. 

 
Table 5. SSIM and PSNR scores of images in Li’s dataset using different loss function. 

 
Methods LL1+Lssim   LL1+Lssim +Lsmooth +Ldc   

SSIM 0.8140 0.8195 

PSNR 20.7920 21.1002 

4.4.2. Analysis of the influence of loss function 
The loss function in Equation (15) is used to weaken the haze effect and improve the 
brightness of underwater images. The loss function in Equation (14) is used for denoising of 
underwater images. According to Fig. 11, by introducing the two loss functions, the brightness 
of image is improved, and the haze effect is weakened. From the quantitative perspective, see 
Table 5 for specific information, introduction of these two loss functions can improve the 
SSIM and PSRN scores of underwater images. The main reason is that by introducing the 
smooth loss function, the edge details of the underwater image can be preserved to the great 
extent while also denoising the image.  

5. Conclusion 

This paper introduces a method using CNN to recover underwater images in detail. First, 
according to the characteristics of underwater images, we design a deep learning model by 
combining the SOS mechanism, channel attention mechanism and gated subset. In the 
meantime, considering the noise of underwater images, we use the traditional edge 
preservation filtering method as the loss function of model. Due to the low brightness of 
underwater images, we introduce a loss function to improve the brightness of the image. 
Finally, we trained our model, compare and analyze the images obtained by our model with 
those by the other seven methods. We conduct both quantitative and qualitative analyses. From 
the perspective of qualitative analysis, the images recovered with our method have good 
brightness, and the texture details can also be well preserved. According to the quantitative 
analysis, compared with most methods, our method has great performance in accordance with 
various evaluation criteria. Even though the deep learning methods have great advantages 
compared with the conventional methods, the images obtained by the deep learning methods 
still have some problems due to restriction of datasets. In the future, we need to address these 
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problems in processing underwater images, such as the blurring effect of underwater images 
caused by shaking of underwater photography and the influence of underwater turbulences. 
Therefore, for better image recovery, the blurring effect needs to be removed. However, 
because paired datasets were difficult to obtain during our work, we will focus on the synthesis 
of datasets and the elimination of blur effects in underwater images. 
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