DOI QR코드

DOI QR Code

Recent Progress in Zeolite Membrane for Wastewater Treatment: A Review

폐수처리를 위한 제올라이트 막의 최근 연구에 대한 총설

  • Lee, Joo Yeop (Nano Science and Engineering, Underwood International College, Yonsei University) ;
  • Patel, Rajkumar (Energy and Environmental Science and Engineering, Integrated Science and Engineering Division, Underwood International College, Yonsei University)
  • 이주엽 (연세대학교 언더우드학부 융합과학공학부 나노과학공학) ;
  • 라즈쿠마 파텔 (연세대학교 언더우드학부 융합과학공학부 에너지환경융합전공)
  • Received : 2022.08.11
  • Accepted : 2022.08.25
  • Published : 2022.08.31

Abstract

Wastewater is released from leather, textile, paint, wood, or dye processing industries as well as petroleum refining industries. Wastewater from these industries contains water pollutant such as heavy metals and nitrogen compounds and has high chemical oxygen demand (COD). While there various filtering pollutants from wastewater for safe disposal, membrane-based technology is one of the most efficient methods for its high efficiency and low cost. Among various membranes, zeolite membranes gain spotlight for its cost-effectiveness and have undergone a lot of research. This review is focused on recent progress in zeolite membrane for wastewater treatment in following order: i) wastewater treatment, ii) microfiltration membrane, iii) hollow fiber membrane, and iv) ultrafiltration membrane.

폐수는 석유 정제 산업에서만 방출되는 것이 아니고 아니라 가죽, 섬유, 페인트, 목재, 염료 가공 산업에서 또한 방출된다. 이런 산업 폐수는 중금속과 질소화합물 등 수질오염물질을 포함하고 있으며 화학적 산소요구량(COD)이 높다. 안전한 처리를 위해 폐수에서 각종 오염물질을 걸러내는 방식이 있지만 막 기반 기술은 고효율, 저비용으로 가장 효율적인 방법 중 하나이다. 다양한 막 중에서, 제올라이트 막은 가성비로 주목을 받고 있으며 많은 연구를 거쳤다. 본 리뷰논문은 i) 폐수처리, ii) 미세여과막, iii) 중공사막, iv) 초여과막의 순서로 폐수처리를 위한 제올라이트 막의 최근 진척을 중점으로 다루고 있다.

Keywords

References

  1. F. K. Baysak, "A novel approach to Chromium rejection from sewage wastewater by pervaporation", J. Mol. Struct., 1233, 130082 (2021).
  2. W. H. Chen, C. Y. Tsai, S. Y. Chen, S. Sung, and J. G. Lin, "Treatment of campus domestic wastewater using ambient-temperature anaerobic fluidized membrane bioreactors with zeolites as carriers", Int. Biodeterior. Biodegrad., 136, 49-54 (2019). https://doi.org/10.1016/j.ibiod.2018.10.010
  3. Y. J. Guan, Y. L. Shang, Z. B. Wang, and S. T. Jiang, "Separation of direct orange S from wastewater by the ceramic membranes with Ce/Sb-SnO2", Desalin. Water Treat., 108, 291 (2018).
  4. J. Haavisto, P. Dessi, P. Chatterjee, M. Honkanen, M. T. Noori, M. Kokko, A. M. Lakaniemi, P. N. L. Lens, and J. A. Puhakka, "Effects of anode materials on electricity production from xylose and treatability of TMP wastewater in an up-flow microbial fuel cell", Chem. Eng. J., 372, 141 (2019).
  5. A. L. Huff Chester, K. Eum, M. Tsapatsis, M. A. Hillmyer, and P. J. Novak, "Enhanced Nitrogen Removal and Anammox Bacteria Retention with Zeolite-Coated Membrane in Simulated Mainstream Wastewater", Environ. Sci. Techno. Lett., 8, 468 (2021).
  6. A. A. Oyekanmi, K. H. P. S. Abdul, T. T. Dele-Afolabi, M. Rafatullah, R. M. S. Mohammed, T. Alfatah, D. Mohammed, and C. K. Abdullah, "Fabrication and characterization of porous ceramic composite membrane for water and wastewater treatment", Desalin. Water Treat., 246, 174 (2022).
  7. H. Shahbeig, M. R. Mehrnia, H. R. Tashauoei, and M. Rezaei, "Role of zeolite in reducing membrane fouling in a hybrid membrane bioreactor system applied for wastewater treatment", Desalin. Water Treat., 98, 52 (2017).
  8. S. Kim and R. Patel, "Nanocomposite water treatment membranes: Antifouling prospective", Membr. J., 30, 158 (2020).
  9. Y. Kwak and R. Patel, "A review on ceramic based membranes for textile wastewater treatment", Membr. J., 32, 100 (2022).
  10. M. Wang, L. Schideman, H. Lu, Y. Zhang, B. Li, and W. Cao, "Zeolite-amended microalgal-bacterial system in a membrane photobioreactor for promoting system stability, biomass production, and wastewater treatment efficiency to realize Environmental-Enhancing Energy paradigm", J. Appl. Phycol., 31, 335 (2019).
  11. H. Nagar, N. Badhrachalam, V. V. B. Rao, and S. Sridhar, "A novel microbial fuel cell incorporated with polyvinylchloride/4A zeolite composite membrane for kitchen wastewater reclamation and power generation", Mater Chem Phys, 224, 175 (2019).
  12. J. Yuan, W. S. Hung, H. Zhu, K. Guan, Y. Ji, Y. Mao, G. Liu, K. R. Lee, and W. Jin, "Fabrication of ZIF-300 membrane and its application for efficient removal of heavy metal ions from wastewater", J. Membr. Sci., 572, 20 (2019).
  13. Y. Yurekli, "Removal of heavy metals in wastewater by using zeolite nano-particles impregnated polysulfone membranes", J. Hazard. Mater., 309, 53 (2016).
  14. T. Anjum, R. Tamime, and A. L. Khan, "Mixedmatrix membranes comprising of polysulfone and porous UiO-66, zeolite 4A, and their combination: Preparation, removal of humic acid, and antifouling properties", Membr., 10, 393 (2020).
  15. S. Chang, R. Ahmad, D. E. Kwon, and J. Kim, "Hybrid ceramic membrane reactor combined with fluidized adsorbents and scouring agents for hazardous metal-plating wastewater treatment", J. Hazard. Mater., 388, 121777 (2020).
  16. S. Nijpanich, T. Hagio, K. Murase, J. H. Park, Y. Kamimoto, J. Sakdapipanich, C. Terashima, N. Chanlek, and R. Ichino, "A tri-layer floating photocatalyst/adsorbent for the removal of organic compounds from wastewater: Layer-by-layer deposition of silicalite-1 and titania on hollow glass microspheres", Environ. Technol. Innov., 26, 102242 (2022).
  17. R. Vinoth Kumar and G. Pugazhenthi, "Removal of chromium from synthetic wastewater using MFI zeolite membrane supported on inexpensive tubular ceramic substrate", J. Water Reuse Desalin., 7, 365 (2017).
  18. H. L. Jamieson, H. Yin, A. Waller, A. Khosravi, and M. L. Lind, "Impact of acids on the structure and composition of Linde Type A zeolites for use in reverse osmosis membranes for recovery of urine-containing wastewaters", Microporous Mesoporous Mater., 201, 50 (2015).
  19. Y. Li, L. N. Sim, J. S. Ho, T. H. Chong, B. Wu, and Y. Liu, "Integration of an anaerobic fluidized-bed membrane bioreactor (MBR) with zeolite adsorption and reverse osmosis (RO) for municipal wastewater reclamation: Comparison with an anoxic-aerobic MBR coupled with RO", Chemosphere, 245, 125569 (2020).
  20. L. Zhu, J. Ji, S. Wang, C. Xu, K. Yang, and M. Xu, "Removal of Pb(II) from wastewater using Al2O3-NaA zeolite composite hollow fiber membranes synthesized from solid waste coal fly ash", Chemosphere, 206, 278 (2018).
  21. X. L. Zhuang, M. C. Shin, B. J. Jeong, S. H. Lee, and J. H. Park, "Fabrication of K-PHI zeolite coated alumina hollow fiber membrane and study on removal characteristics of metal ions in lignin wastewater", Korean Chem. Eng. Res., 59, 174 (2021).
  22. W. Aloulou, H. Aloulou, M. Khemakhem, J. Duplay, M. O. Daramola, and R. Ben Amar, "Synthesis and characterization of clay-based ultrafiltration membranes supported on natural zeolite for removal of heavy metals from wastewater", Environ. Technol. Innov., 18, 100794 (2020).
  23. A. Ivan, D. L. Ghindeanu, V. Danciulescu, A. Raducu, and A. C. Nechifor, "Composite polyaniline-zeolite membrane material for wastewater ultrafiltration", Opto. Adv. Mat. Rap. Comm., 6, 1134 (2012).
  24. E. Katsou, S. Malamis, and K. J. Haralambous, "Industrial wastewater pre-treatment for heavy metal reduction by employing a sorbent-assisted ultrafiltration system", Chemosphere, 82, 557 (2011).
  25. E. Katsou, S. Malamis, K. J. Haralambous, and M. Loizidou, "Use of ultrafiltration membranes and aluminosilicate minerals for nickel removal from industrial wastewater", J. Membr. Sci., 360, 234 (2010).