Acknowledgement
This study was supported by Amway Korea, Ltd. (Seoul, Korea).
References
- Shimizu I, Yoshida Y, Suda M, Minamino T. DNA damage response and metabolic disease. Cell Metab 2014; 20(6): 967-977. https://doi.org/10.1016/j.cmet.2014.10.008
- Barzilai A, Yamamoto K. DNA damage responses to oxidative stress. DNA Repair (Amst) 2004; 3(8-9): 1109-1115. https://doi.org/10.1016/j.dnarep.2004.03.002
- Al-Aubaidy HA, Jelinek HF. Oxidative DNA damage and obesity in type 2 diabetes mellitus. Eur J Endocrinol 2011; 164(6): 899-904. https://doi.org/10.1530/EJE-11-0053
- Elledge SJ. Cell cycle checkpoints: preventing an identity crisis. Science 1996; 274(5293): 1664-1672. https://doi.org/10.1126/science.274.5293.1664
- Kang S, Lim Y, Kim YJ, Jung ES, Suh DH, Lee CH, et al. Multivitamin and mineral supplementation containing phytonutrients scavenges reactive oxygen species in healthy subjects: a randomized, double-blinded, placebo-controlled trial. Nutrients 2019; 11(1): E101.
- Stroeve JH, van Wietmarschen H, Kremer BH, van Ommen B, Wopereis S. Phenotypic flexibility as a measure of health: the optimal nutritional stress response test. Genes Nutr 2015; 10(3): 13.
- Cho J, Park E. Ferulic acid maintains the self-renewal capacity of embryo stem cells and adipose-derived mesenchymal stem cells in high fat diet-induced obese mice. J Nutr Biochem 2020; 77: 108327.
- Tukey JW. Exploratory data analysis. Boston (MA): Addison-Wesley; 1977.
- Kardinaal AF, van Erk MJ, Dutman AE, Stroeve JH, van de Steeg E, Bijlsma S, et al. Quantifying phenotypic flexibility as the response to a high-fat challenge test in different states of metabolic health. FASEB J 2015; 29(11): 4600-4613. https://doi.org/10.1096/fj.14-269852
- Zhang Y, Hunter T. Roles of Chk1 in cell biology and cancer therapy. Int J Cancer 2014; 134(5): 1013-1023. https://doi.org/10.1002/ijc.28226
- Wellen KE, Thompson CB. Cellular metabolic stress: considering how cells respond to nutrient excess. Mol Cell 2010; 40(2): 323-332. https://doi.org/10.1016/j.molcel.2010.10.004
- Rajgopal A, Roloff SJ, Burns CR, Fast DJ, Scholten JD. The cytoprotective benefits of a turmeric, quercetin, and rosemary blend through activation of the oxidative stress pathway. Pharmacogn Mag 2019; 15(66): 449.
- Missler SR, Rajgopal A, Roloff SJ, Scholten JD, Burns CR, Patterson JA, et al. Synergistic activation of the Nrf2-ARE oxidative stress response pathway by a combination of botanical extracts. Planta Medica International Open 2016; 3(02): e27-e30. https://doi.org/10.1055/s-0036-1585165
- Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013; 153(6): 1194-1217. https://doi.org/10.1016/j.cell.2013.05.039
- Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest 2013; 123(3): 966-972. https://doi.org/10.1172/JCI64098
- Bartek J, Lukas J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 2003; 3(5): 421-429. https://doi.org/10.1016/S1535-6108(03)00110-7
- Sorensen CS, Syljuasen RG, Falck J, Schroeder T, Ronnstrand L, Khanna KK, et al. Chk1 regulates the S phase checkpoint by coupling the physiological turnover and ionizing radiation-induced accelerated proteolysis of Cdc25A. Cancer Cell 2003; 3(3): 247-258. https://doi.org/10.1016/S1535-6108(03)00048-5
- McGowan CH. Checking in on Cds1 (Chk2): a checkpoint kinase and tumor suppressor. BioEssays 2002; 24(6): 502-511. https://doi.org/10.1002/bies.10101
- Wittlinger M, Grabenbauer GG, Sprung CN, Sauer R, Distel LV. Time and dose-dependent activation of p53 serine 15 phosphorylation among cell lines with different radiation sensitivity. Int J Radiat Biol 2007; 83(4): 245-257. https://doi.org/10.1080/09553000701275432