DOI QR코드

DOI QR Code

초경합금 성형체 특성 변화에 미치는 유기물 결합제의 영향

Effect of Polymeric Binders on Green body Properties of WC-Co Cemented Carbides

  • 임영수 (국립안동대학교 신소재공학부, 친환경신소재산업지원센터) ;
  • 안선용 (한국야금) ;
  • 임재석 (국립안동대학교 신소재공학부, 친환경신소재산업지원센터) ;
  • 백용균 (국립안동대학교 신소재공학부, 친환경신소재산업지원센터) ;
  • 정태주 (국립안동대학교 신소재공학부, 친환경신소재산업지원센터)
  • Lim, Young-Soo (School of Advanced Materials Engineering, Industrial Technology Center for Environment-friendly Materials, Andong National University) ;
  • Ahn, Sun-Yong (KORLOY) ;
  • Lim, Jae-Suk (School of Advanced Materials Engineering, Industrial Technology Center for Environment-friendly Materials, Andong National University) ;
  • Paek, Yeong-Kyeun (School of Advanced Materials Engineering, Industrial Technology Center for Environment-friendly Materials, Andong National University) ;
  • Chung, Tai-Joo (School of Advanced Materials Engineering, Industrial Technology Center for Environment-friendly Materials, Andong National University)
  • 투고 : 2022.08.09
  • 심사 : 2022.08.25
  • 발행 : 2022.08.28

초록

The green body of WC-Co cemented carbides containing polymeric binders such as paraffin, polyethylene glycol (PEG), and polyvinyl acetate (PVA) are prepared. The green density of the WC-Co cemented carbides increases with the addition of binders, with the exception of PVA, which is known to be a polar polymeric substance. The green strength of the WC-Co cemented carbides improves with the addition of paraffin and a mixture of PEG400 and PEG4000. In contrast, the green strength of the WC-Co does not increase when PEG400 and PEG4000 is added individually. The compressive strength of the green body increases to 14 MPa, and the machinability of the green body improves when more than 4-6 wt% paraffin and a mixture of PEG400 and PEG4000 is used. Simultaneously, the sintered density of WC-Co is as high as 99% relative density, similar to a low binder addition of 1-2 wt%.

키워드

과제정보

이 논문은 안동대학교 기본연구지원사업에 의하여 수행되었으며 이에 감사드립니다. 또한, 본 연구에 많은 도움을 주신 한국야금 관계자 여러분께 감사드립니다.

참고문헌

  1. H. E. Exner: Inter. Metals Rev., 24 (1979) 149.
  2. T.-J. Chung, S.-Y. Ahn and Y.-K. Paek: J. Kor. Ceram. Soc., 42 (2005) 171.
  3. F. V. Lenel: Powder Metallurgy Principles and Applications, Metal Powder Industries Federation, Princeton, New Jersy (1980).
  4. E. Menendez, J. Sort, A. Concustell, S. Surinach, J. Nogues and M. D. Baro: Nanotechnol., 18 (2007) 185609.
  5. K. Rodiger, H. van den Berg, K. Dreyer, D. Kassel and S. Orths: Int. J. Refract. Met. Hard Mater., 18 (2000) 111.
  6. N. Favrot, J. Besson, C. Colin and F. Delannay: J. Am. Ceram. Soc., 82 (1999) 1153.
  7. J. S. Reeds: Principles of Ceramic Processing, John Wiley & Sons, Inc., New York (1995).
  8. M. D. Sacks and T.-Y. Cheng: J. Am. Ceram. Soc., 67 (1984) 526.
  9. M. D. Sacks and T.-Y. Cheng: J. Am. Ceram. Soc., 67 (1984) 532.
  10. K. Salmi, H. Staf and P.-L. Lasson: J. Mater. Eng. Perform., 30 (2021) 2545.
  11. Sandvik: Japan, JP P2008-31552A (2008).
  12. Sandvik: Japan, JP P2007-84916A (2007).