DOI QR코드

DOI QR Code

Evaluation of high plasticity clay stabilization methods for resisting the environmental changes

  • Taleb, Talal (Department of Civil Engineering, Bursa Uludag University) ;
  • Unsever, Yesim S. (Department of Civil Engineering, Bursa Uludag University)
  • 투고 : 2022.02.20
  • 심사 : 2022.08.16
  • 발행 : 2022.09.10

초록

One of the most important factors that should be considered for using any ground improvement technique is the stability of stabilized soil and the durability of the provided solution for getting the required engineering properties. Generally, most of the earth structures that are constructed on clayey soils are exposing movements due to the long periods of drying or wetting cycles. Over time, environmental changes may result in swells or settlements for these structures. In order to mitigate this problem, this research has been performed on mixtures of high plasticity clay with traditional additives such as lime, cement and non-traditional additives such as polypropylene fiber. The purpose of the research is to assess the most appropriate ground improvement technique by using commercially available additives for resisting the developed desiccation cracks during the drying process and resisting the volume changes that may result during wet/dry cycles as an attempt to simulate the changes of environmental conditions. The results show that the fiber-reinforced samples have the lowest volumetric deformation in comparision with cement and lime stabilized samples, and the optimum fiber content is identified as 0.38%. In addition, the desiccation cracks were not visible on the samples' surface for both unreinforced and chemically stabilized samples. Regarding cracks resistance resulting from the desiccation process, it is observed, that the resistance is connected with the fiber content and increases with the increase of the fiber inclusion, and the optimum content is between 1% and 1.5%.

키워드

과제정보

The research described in this paper received no external funding.

참고문헌

  1. Abass, I.K. (2013), "Lime stabilization of expansive soil", J. Eng. Develop., 17(1), 219-232.
  2. Abhishek. T. (2015), "Quantification of cracks and shrinkage using image analysis", Department of Civil Engineering National Institute of Technology, Rourkela Odisha, India.
  3. Aiban, S.A., Al-Ahmad, H.M., Asi, A.M., Siddique, Z.U. and Al-Amoudi, O.S.B. (2006), "Effect of geotextile and cement on the performance of sabkha subgrade", Build. Environ., 41(6), 807-820. https://doi.org/10.1016/j.buildenv.2005.03.006.
  4. Akbulut, S., Arasan, S. and Kalkan, E. (2007), "Modification of clayey soils using scrap tire rubber and synthetic fibers", Appl. Clay Sci., 38(1-2), 23-32. https://doi.org/10.1016/j.clay.2007.02.001.
  5. Al-Bared, M.A., Harahap, I.S., Marto, A., Abad, S.V.A.N.K., Mustaffa, Z. and Ali, M.O. (2019), "Mechanical behaviour of waste powdered tiles and Portland cement treated soft clay", Geomech. Eng., 19(1), 37-47. https://doi.org/10.12989/gae.2019.19.1.037.
  6. Al-Layla, M.T., Al-Dabbagh, A.W. and Jaro, M.N. (2008), "Tensile strength of natural and lime stabilized mosul clay", Al-Rafidain Eng. J. (AREJ), 16(2), 1-11. https://doi.org/10.33899/rengj.2008.44529.
  7. Al-Mahbashi, A.M., Elkady, T.Y. and Alrefeai, T.O. (2015), "Soil water characteristic curve and improvement in lime treated expansive soil", Geomech. Eng., 8(5), 687-706. https://doi.org/10.12989/gae.2015.8.5.687.
  8. Ali, M., Aziz, M., Hamza, M. and Madni, M.F. (2020), "Engineering properties of expansive soil treated with polypropylene fibers", Geomech. Eng., 22(3), 227-236. https://doi.org/10.12989/gae.2020.22.3.227.
  9. AlZubaidi, R.M., AlRawi, K.H. and AlFalahi, A.J. (2013), "Using cement dust to reduce swelling of expansive soil", Geomech. Eng., 5(6), 565-574. https://doi.org/10.12989/gae.2013.5.6.565.
  10. Aparna R. (2014), "Soil stabilization using rice husk ash and cement", Int. J. Civil Eng. Res., 5(1), 49-54.
  11. Asgari, M.R., Baghebanzadeh Dezfuli, A. and Bayat, M. (2013), "Experimental study on stabilization of a low plasticity clayey soil with cement/lime", Arab. J. Geosci., 8, 1439-1452. https://doi.org/10.1007/s12517-013-1173-1.
  12. Baker, R. (1981), "Tensile strength, tension cracks, and stability of slopes", JPN Soc. Soil Mech. Found. Eng. Soil. Found., 21(2), 1-17. https://doi.org/10.3208/sandf1972.21.2_1.
  13. Baldovino, J.A., Moreira, E.B., Teixeira, W., Izzo, R.L. and Rose, J.L. (2018), "Effects of lime addition on geotechnical properties of sedimentary soil in Curitiba, Brazil", J. Rock Mech. Geotech. Eng., 10(1), 188-194. https://doi.org/10.1016/j.jrmge.2017.10.001.
  14. Bozbey, I. and Garaisayev, S. (2010), "Effects of soil pulverization quality on lime stabilization of an expansive clay", Environ. Earth Sci., 60, 1137-1151. https://doi.org/10.1007/s12665-009-0256-5.
  15. Brown, R., Shukla, A. and Natarajan K.R. (2002), "Fiber reinforcement of concrete structures", Kingston, RI, University of Rhode Island Trans Center, Kingston, RI, USA.
  16. Cai, Y., Shi, B., Ng, C.W.W. and Tang, C. (2006), "Effect of polypropylene fibre and lime admixture on engineering properties of clayey soil", Eng. Geol., 87(3-4), 230-240. https://doi.org/10.1016/j.enggeo.2006.07.007.
  17. Calik, U. and Sadoglu, E. (2014), "Engineering properties of expansive clayey soil stabilized with lime and perlite", Geomech. Eng., 6(4), 403-418. https://doi.org/10.12989/gae.2014.6.4.403.
  18. Degirmenci, N., Okucu, A. and Turabib, A. (2007), "Application of phosphogypsum in soil stabilization", Build. Environ., 42, 3393-3398. https://doi.org/10.1016/j.buildenv.2006.08.010.
  19. Farghaly, A.A., El-Shater, A., Naiem, M.A.A. and Hamdy, F. (2020), "Lime addition chemical stabilization of expansive soil at Al-Kawamil city, Sohag region, Egypt", Adv. Comput. Des., 5(1), 1-11. https://doi.org/10.12989/acd.2020.5.1.001.
  20. Fattah, M.Y., Salman, F.A. and Nareeman, B.J. (2010), "A treatment of expansive soil using different additives", Acta Montanistica Slovaca, 15(4), 290-297.
  21. Ghobadi, M.H., Abdilor, Y. and Babazadeh, R. (2013), "Stabilization of clay soils using lime and effect of pH variations on shear strength parameters", Bull. Eng. Geol. Environ., 73(2), 611-619. https://doi.org/10.1007/s10064-013-0563-7.
  22. Ghobadi, M.H., Babazadeh, R. and Abdilor, Y. (2014), "Utilization of lime for stabilizing marly soils and investigating the effect of pH variations on shear strength parameters", J. Eng. Geol., 8(1), 1939-1962.
  23. Guney, Y., Sari, D., Cetin, M. and Tuncan, M. (2007), "Impact of cyclic wetting-drying on swelling behavior of lime-stabilized soil", Build. Environ., 42(2), 681-688. https://doi.org/10.1016/j.buildenv.2005.10.035.
  24. Harichane, K. (2011), "Modelisation du comportement des sols ameliores (Modelling of the behaviour of improved soil)", Doctoral Thesis, Universite des Sciences et de la Technologie Mohamed Boudiaf, Oran, Algeria.
  25. Harichane, K., Ghrici, M. and Kenai, S. (2011), "Effect of curing time on shear strength of cohesive soils stabilized with combination of lime and natural pozzolana", Int. J. Civil Eng., 9(2), 90-96.
  26. Harichane, K., Ghrici, M. and Missoum, H. (2011), "Influence of natural pozzolana and lime additives on the temporal variation of soil compaction and shear strength", Front. Earth Sci., 5, 162-169. https://doi.org/10.1007/s11707-011-0166-1.
  27. Harichane, K., Ghrici, M., Khebizi, W. and Missoum, H. (2010), "Effect of the combination of lime and natural pozzolana on the durability of clayey soils", Elec. J. Geotech. Eng., 15, 1194-1210.
  28. Hashemi-Tabatabaei, S. and Aghaei-Araei, A. (2006), "Use of Quick Lime to improve soil property with high Plasticity Index", Earth Sci., 16(61), 60-67.
  29. Hejazi, S.M., Sheikhzadeh, M., Abtahi, S.M. and Zadhoush, A. (2012), "A simple review of soil reinforcement by using natural and synthetic fibers", Constr. Build. Mater, 30, 100-116. https://doi.org/10.1016/j.conbuildmat.2011.11.045.
  30. Hoy, M., Rachan, R., Horpibulsuk, S., Arulrajah, A. and Mirzababaei, M. (2017), "Effect of wetting-drying cycles on compressive strength and microstructure of recycled asphalt pavement-fly ash geopolymer", Constr. Build. Mater, 144, 624-34. https://doi.org/10.1016/j.conbuildmat.2017.03.243.
  31. Ikhlef, N.S., Ghembaza, M.S. and Dadouch, M. (2015), "Effect of treatment with cement on the mechanical characteristics of silt from Telagh region of Sidi Belabes Algeria", Geotech. Geol. Eng., 33(4), 1067-1079. https://doi.org/10.1007/s10706-015-9888-2.
  32. Indiana Devlopment of Transportation (INDOT) (2020), Design Procedures for Soil Modification or Stabilization, Division of Engineering and Asset Management Division of Geotechnical Services, 120 South Shortridge Road Indianapolis, Indiana 46219, 1-18.
  33. Kalkan, E. (2006), "Utilization of red mud as a stabilization material for the preparation of clay liners", Eng. Geol., 87(3-4), 220-229. https://doi.org/10.1016/j.enggeo.2006.07.002.
  34. Kilic, R., Kucukali, O. and Ulamis, K. (2016), "Stabilization of high plasticity clay with lime and gypsum", Bull. Eng. Geol. Environ., 75(2), 735-744. https://doi.org/10.1007/s10064-015-0757-2.
  35. Kumar, A., Walia, B.S. and Bajaj, A. (2007), "Influence of fly ash, lime, and polyester fibers on compaction and strength properties of expansive soil", J. Mater. Civil Eng., 19(3), 242-48. https://doi.org/10.1061/(asce)0899-1561(2007)19:3(242).
  36. Miller, C.J., Mi, H. and Yesiller, N. (1998), "Experimental analysis of desiccation crack propagation in clay liners", J. Am. Water Resour. Assoc. (JAWRA), 34(3), 677-686. https://doi.org/10.1111/j.1752-1688.1998.tb00964.x.
  37. Mirzababaei, M., Mohamed, M. and Miraftab, M. (2017), "Analysis of strip footings on fiber-reinforced slopes with the aid of particle image velocimetry", J. Mater. Civil Eng., 29(4). https://doi.org/10.1061/(asce)mt.1943-5533.0001758.
  38. Nguyen, T.T.H. (2015), "Stabilisation des sols traites a la chaux et leur comportement au gel (Stabilization of soils treated with lime and their freezing behaviour)", Ph.D Thesis, Universite Paris Est, Paris, France.
  39. Pakbaz, M.S. and Alipour, R. (2012), "Influence of cement addition on the geotechnical properties of an Iranian clay", Appl. Clay Sci., 1(4), 67-68. https://doi.org/10.1016/j.clay.2012.07.006.
  40. Portelinha, F.H.M., Lima, D.C., Fontes, M.P.F. and Carvalho, C.A.B. (2012), "Modification of a lateritic soil with lime and cement: An economical alternative for flexible pavement layers", Soil. Rock., Sao Paulo, 35(1), 51-63. https://doi.org/10.28927/SR.351051
  41. Reddy, N.G., Tahasildar, J. and Rao, B.H. (2015), "Evaluating the influence of additives on swelling characteristics of expansive soils", Int. J. Geosynth. Ground Eng., 1(7), 1-13. https://doi.org/10.1007/s40891-015-0010-x.
  42. Segetin, M., Jayaraman, K. and Xu, X. (2007), "Harakeke reinforcement of soil-cement building materials: Manufacturability and properties", Build. Environ., 42(8), 3066-3079. https://doi.org/10.1016/j.buildenv.2006.07.033.
  43. Sharo, A.A., Alawneh, A.S., Al Zghool, H.N. and Rabab'ah, S.R. (2022), "Effect of alkali-resistant glass fibers and cement on the geotechnical properties of highly expansive soil", J. Mater. Civil Eng., 34(2), 04021417. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004058.
  44. Sharo, A.A., Alhowaidi, Y.A. and Al-Tawaha, M.S. (2019), "Improving properties of expansive soil using cement, quick lime and cement-lime blend", Int. Rev. Civil Eng., 10(2), 94. https://doi.org/10.15866/irece.v10i2.16064.
  45. Silvestri, V., Sarkis, G., Bekkouche, N. and Soulie, M. (1992), "Evapotranspiration, trees and damage to foundations in sensitive clays", Proceedings of the Canadian Geotechnical Conference, Vol. II, 533-538.
  46. Sivakumar Babu, G.L. and Vasudevan, A.K. (2008), "Strength and stiffness response of coir fiber-reinforced tropical soil", J. Mater. Civil Eng., 20(9), 571-577. https://doi.org/10.1061/(asce)0899-1561(2008)20:9(571).
  47. Stoltz, G., Cuisinier, O. and Masrouri, F. (2012), "Multi-scale analysis of the swelling and shrinkage of a lime-treated expansive clayey soil", Appl. Clay Sci., 61, 44-51. https://doi.org/10.1016/j.clay.2012.04.001.
  48. Sunitsakul, J., Sawatparnich, A. and Sawangsuriya, A. (2012), "Prediction of unconfined compressive strength of soil-cement at 7 days", Geotech. Geo. Eng., 30(1), 263-268. https://doi.org/10.1007/s10706-011-9460-7
  49. Tang, C., Wang, D., Cui, Y., Shi, B. and Li, J. (2016), "Tensile strength of fiber-reinforced soil", J. Mater. Civil Eng., 28(7), 04016031. https://doi.org/10.1061/(asce)mt.1943-5533.0001546.
  50. Tang, C.S., Shi, B., Liu, C., Gao, L. and Inyang, H.I. (2011), "Experimental investigation of the desiccation cracking behavior of soil layers during drying", J. Mater. Civil Eng., 23(6), 873-878. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000242.
  51. Tran, T.D. (2014), "Role of the microstructure of clayey soils in the shrinkage-swelling processes from the specimen scale to the environmental scale", Ph.D Thesis, Ecole Nationale Superieure des Mines de Paris, France.
  52. Tran, T.D., Cui, Y.J., Tang, A.M., Audiguier, M. and Cojean, R. (2014), "Effects of lime treatment on the microstructure and hydraulic conductivity of Hericourt clay", J. Rock Mech. Geotech. Eng., 6(5), 399-404. https://doi.org/10.1016/j.jrmge.2014.07.001.
  53. Viswanadham, B.V.S., Phanikumar, B.R. and Mukherjee, R.V. (2009), "Swelling behaviour of a geofiber-reinforced expansive soil", Geotext. Geomembran., 27(1), 73-76. https://doi.org/10.1016/j.geotexmem.2008.06.002.
  54. Wang, D., Abriak, N. and Zentar, R. (2013), "Strength and deformation properties of Dunkirk marine sediments solidified with cement, lime and fly ash", Eng. Geol., 166, 90-99. https://doi.org/10.1016/j.enggeo.2013.09.007.
  55. Yilmaz, Y. (2015), "Compaction and strength characteristics of fly ash and fiber amended clayey soil", Eng. Geol., 188, 168-77. https://doi.org/10.1016/j.enggeo.2015.01.018.
  56. Yilmaz, Y. and Ozaydin, V. (2013), "Compaction and shear strength characteristics of colemanite ore waste modified active belite cement stabilized high plasticity soils", Eng. Geol., 155, 45-53. https://doi.org/10.1016/j.enggeo.2013.01.003.