DOI QR코드

DOI QR Code

병렬 연결된 리튬이온전지 셀의 비파괴 전기화학적 열화상태 진단

Degradation diagnosis of parallel-connected lithium-ion battery cells via non-constructive electrochemical approach

  • 이가람 (인하대학교 화학공학과) ;
  • 정지윤 (인하대학교 화학공학과) ;
  • 김용태 (인하대학교 화학공학과) ;
  • 최진섭 (인하대학교 화학공학과)
  • Lee, Garam (Department of Chemical and Chemical Engineering, Inha University) ;
  • Jeong, Jiyoon (Department of Chemical and Chemical Engineering, Inha University) ;
  • Kim, Yong-Tae (Department of Chemical and Chemical Engineering, Inha University) ;
  • Choi, Jinsub (Department of Chemical and Chemical Engineering, Inha University)
  • 투고 : 2022.08.19
  • 심사 : 2022.08.23
  • 발행 : 2022.08.31

초록

As environmental pollution becomes more serious, the demand for electric vehicles (EVs) and lithium-ion batteries for electric vehicles is rapidly increasing worldwide. Accordingly, the amount of waste batteries is also increasing, and a technology for recycling and reusing them is required. In order to reuse a used battery, it is necessary to non-destructively diagnose the deterioration condition of the battery. Therefore, in this study, we investigate the diagnosis of degradation for parallel-connected lithium-ion battery cells through non-constructive electrochemical approach. As the number of parallel-connected cells increased, in addition to linear degradation, abrupt step-like degradation occurred, which is attributed to the predominant degradation of specific cells. In addition, it is confirmed that deteriorated cells among multiple cells can be distinguished through a simple measurement of open circuit voltage (OCV).

키워드

과제정보

본 연구는 2020-2022학년도 한국에이브이엘(주)의 지원에 의하여 연구되었음.

참고문헌

  1. L. S. Martins, L. F. Guimaraes, A. B. B. Junior, J. A. S. Tenorio, D. C. R. Espinosa, Electric car battery: An overview on global demand, recycling and future approaches towards sustainability, J. Environ. Econ. Manage., 295 (2021) 113091.
  2. T. Chen, Y. Jin, H. Lv, A. Yang, M. Liu, B. Che, Y. Xie, Q. Chen, Applications of lithium-ion batteries in grid-scale energy storage systems, Trans. Tianjin Univ., 26 (2020) 208.
  3. 김재경, 박찬국, 전기차사용 후 배터리 거래시장 구축을 위한 정책연구, 에너지경제연구원, (2018) 2-136.
  4. J. Heelan, E. Gratz, Z. Zheng, Q. Wang, M. Chen, D. Apelian, Y. Wang, Current and prospective Li-ion battery recycling and recovery processes, JOM, 68 (2016) 2632.
  5. L. Gaines, The future of automotive lithium-ion battery recycling: Charting a sustainable course, Sustain. Mater. Technol., (2014) 2.
  6. C. Lei, I. Aldous, J. M. Hartley, D. L. Thompson, S. Scott, R. Hanson, P.A. Anderson, E. Kendrick, R. Sommerville, K.S. Ryder, A. P. Abbott, Lithium ion battery recycling using high-intensity ultrasonication, Green Chem., 23 (2021) 4710.
  7. G. J. Offer, V. Yufit, D. A. Howey, B. Wu, N. P. Brandon, Module design and fault diagnosis in electric vehicle batteries, J. Power Sources, 206 (2012) 383.
  8. L. Wang, Y. Cheng, X. Zhao, A LiFePO4 battery pack capacity estimation approach considering in-parallel cell safety in electric vehicles, Appl. Energy, 142 (2015) 293.
  9. L. C. Casals, B. A. Garcia, L. V. Cremades, Electric vehicle battery reuse: Preparing for a second life, J. Ind. Eng. Manag.-JIEM, 10 (2017) 266.
  10. L. I. Ruihe, R. E. N. Dongsheng, W. A. N. G. Shan, X. I. E. Yingchen, H. O. U. Zhichao, L. U. Langguang, M. Ouyang, Non-destructive local degradation detection in large format lithium-ion battery cells using reversible strain heterogeneity, J. Energy Storage, 40 (2021) 102788.
  11. W. Du, R. E. Owen, A. Jnawali, T. P. Neville, F. Iacoviello, Z. Zhang, S. Liatard, D.J.L. Bratt, P. R. Shearing, In-situ X-ray tomographic imaging study of gas and structural evolution in a commercial Li-ion pouch cell, J. Power Sources, 520 (2022) 230818.
  12. Y. Li, J. N. Weker, W. E. Gent, D. N. Mueller, J. Lim, D. A. Cogswell, T. Tyliszczak, W. C. Chueh, Dichotomy in the lithiation pathway of ellipsoidal and platelet LiFePO4 particles revealed through nanoscale operando state-of-charge imaging, Adv. Funct. Mater., 25 (2015) 3677.
  13. S. Arora, W. Shen, A. Kapoor, Review of mechanical design and strategic placement technique of a robust battery pack for electric vehicles, Renew. Sust. Energ. Rev., 60 (2016) 1319.
  14. P. Ramadass, B. Haran, P. M. Gomadam, R. White, B. N. Popov, Development of first principles capacity fade model for Li-ion cells, J. Electrochem. Soc., 151 (2004) A196.
  15. M. Dubarry, A. Devie, B. Y. Liaw, Cell-balancing currents in parallel strings of a battery system, J. Power Sources, 321 (2016) 36.
  16. S. Yang, X. Gao, Y. Li, W. Xie, B. Guo, L. Zhang, X. Liu, Minimum lithium plating overpotential control based charging strategy for parallel battery module prevents side reactions, J. Power Sources, 494 (2021) 229772.
  17. K. Qian, B. Huang, A. Ran, Y. B. He, B. Li, F. Kang, State-of-health (SOH) evaluation on lithium-ion battery by simulating the voltage relaxation curves, Electrochim. Acta., 303 (2019) 183.
  18. B. Heo, J. Ha, Y. T. Kim, J. Choi, 10 ㎛-thick MoO3-coated TiO2 nanotubes as a volume expansion regulated binder-free anode for lithium ion batteries, J. Ind. Eng. Chem., 96 (2021) 364-370. https://doi.org/10.1016/j.jiec.2021.01.048
  19. K. Lim, H. Park, J. Ha, Y. T. Kim, J. Choi, Dual-carbon-confined hydrangea-like SiO cluster for high-performance and stable lithium ion batteries, J. Ind. Eng. Chem., 101 (2021) 397-404. https://doi.org/10.1016/j.jiec.2021.05.043