DOI QR코드

DOI QR Code

Exploring Learning Effects of Elementary School Students Engaging in the Development of Geological Virtual Field Trips

가상 야외지질답사 모듈 개발에 참여한 초등학생들의 학습 효과 탐색

  • Received : 2022.07.12
  • Accepted : 2022.08.14
  • Published : 2022.08.30

Abstract

The purpose of this study is to explore inductively learning effects of virtual field trips(VFTs) programs developed by elementary school students under the theme of minerals and rocks, focusing on learning in virtual geological components. Ten students attending 'H' elementary school in the metropolitan area voluntarily participated. In order to develop a virtual field trips programs, pre-actual outdoor geological field trips were conducted and virtual field trips programs were developed. In this process, written data of students observing, all video recording and voice recording materials of the course in which students participated, VR development data, and post-interview data were collected. Data were inductively analyzed focusing on four areas(cognitive, psychological, geography, and technical components) of learning in virtual geological field trips. As a result, there were positive learning effects for students in four areas. This study revealed that the study participants were not just participants in virtual learning, but rather developed classes for virtual field trips programs, which had significant results in terms of authentic inquiry.

이 연구의 목적은 광물과 암석을 주제로 초등학생들이 가상 야외지질답사 모듈 개발에 직접 참여함으로써 관찰되는 학생들의 학습 효과를 귀납적으로 탐색하는 것이다. 수도권 소재 'H' 초등학교에 재학 중인 10명의 학생들이 본 연구에 참여하였다. 학생들은 가상 야외지질답사 모듈 개발을 위해 사전에 실제로 야외지질답사를 실행하고 가상 야외지질답사 모듈을 개발하였다. 이 과정에서 학생들이 작성한 서면 자료와 비디오 녹화 영상, 음성 자료, 그리고 모든 연구가 종료된 이후 진행된 면담 자료를 수집하였다. 가상 야외지질학습의 구성 요소 중 네 가지 영역(인지, 심리, 지리, 기술)을 중심으로 연구 참여자들의 학습 효과를 분석하였다. 그 결과 가상 야외지질학습의 네 가지 요소, 인지, 지리, 심리, 기술 영역에서 긍정적인 학습 효과를 확인하였다. 이 연구는 연구 참여자들이 가상 야외지질학습에 단순 참여자가 아니라 가상 야외지질답사 모듈 수업 개발자로서 참탐구의 측면에서 지질학 학습에 유의미한 결과가 있음을 밝혔다.

Keywords

References

  1. 권홍진, 김찬종(2007). 야외 지질 학습에 대한 초임 지구과학 교사의 인식. 한국지구과학회지, 28(1), 14-23.
  2. 김건우, 이기영(2011). 플래시 파노라마를 활용한 웹-기반 가상야외지질답사 개발 및 활용 방안 탐색: 제주도 화산 지형을 중심으로. 한국지구과학회지, 32(2), 212-224.
  3. 김희수(2014). 3D 파노라마 가상 현실 기술을 이용한 지질 답사 학습 자료의 개발과 적용. 한국지구과학회지, 35(3), 180-191.
  4. 김희수(2015). 360 3D 파노라마 기술을 적용한 VFT 개발 및 효과. 대한지구과학교육학회지, 8(2), 193-205. https://doi.org/10.15523/JKSESE.2015.8.2.193
  5. 김희수(2019). 파노라마 가상현실 기술의 교육적 활용. 시그마프레스.
  6. 윤마병(2019). 3D 파노라마 가상현실 만들기를 통한 학성리 맨삽지 야외학습장 융합교육 프로그램 개발. 현장과학교육, 13(3), 339-358. https://doi.org/10.15737/SSJ.13.3.201908.339
  7. 조재희, 윤마병(2022). 남해 해상 국립공원 신수도의 지질명소 및 3D 파노라마 야외학습장 개발. 대한지구과학교육학회지, 15(1), 91-102. https://doi.org/10.15523/JKSESE.2022.15.1.91
  8. 최윤성(2022). 야외지질학습에서 생소한 경험 공간에 대한 초등 예비교사와 중등 지구과학 예비교사들의 인식 탐색. 대한지구과학교육학회지, 15(1), 27-46. https://doi.org/10.15523/JKSESE.2022.15.1.27
  9. 최윤성, 김종욱(2022). '광물과 암석' 관련 야외지질학습에서 초등학생들의 학습 효과에 대한 탐색-생소한 경험 공간을 중심으로-. 한국지구과학회지, 43(3), 430-445.
  10. 최윤성, 김찬종, 최승언(2018). 야외지질학습에 대한 예비 중등 지구과학 교사의 인식 탐색. 한국지구과학회지, 39(3), 291-302.
  11. 허준혁, 이기영(2013). 고등학교 지구과학 수업에서 플래시 파노라마 기반 가상야외답사의 활용이 학생들의 공간 시각화 능력 및 화산 개념 이해에 미치는 영향. 한국지구과학회지, 34(4), 345-355.
  12. Anderberg, P., & Jonsson, B. (2005). Being there. Disability & Society, 20(7), 719-733. https://doi.org/10.1080/09687590500335733
  13. Arrowsmith, C., Counihan, A., & McGreevy, D. (2005). Development of a multi-scaled virtual field trip for the teaching and learning of geospatial science. International Journal of Education and Development using ICT, 1(3), 42-56.
  14. Barton, A. C., & Tan, E. (2010). We be burnin'! Agency, identity, and science learning. The Journal of the Learning Sciences, 19(2), 187-229. https://doi.org/10.1080/10508400903530044
  15. Basu, S. J., Calabrese Barton, A., Clairmont, N., & Locke, D. (2009). Developing a framework for critical science agency through case study in a conceptual physics context. Cultural Studies of Science Education, 4(2), 345-371. https://doi.org/10.1007/s11422-008-9135-8
  16. Boeve-de Pauw, J., Van Hoof, J., & Van Petegem, P. (2019). Effective field trips in nature: The interplay between novelty and learning. Journal of Biological Education, 53(1), 21-33. https://doi.org/10.1080/00219266.2017.1418760
  17. Boyle, A., Maguire, S., Martin, A., Milsom, C., Nash, R., Rawlinson, S., Turner, A., Wurthmann, S., & Conchie, S. (2007). Fieldwork is good: The student perception and the affective domain. Journal of Geography in Higher Education, 31(2), 299-317. https://doi.org/10.1080/03098260601063628
  18. Caliskan, O. (2011). Virtual field trips in education of earth and environmental sciences. Procedia-Social and Behavioral Sciences, 15, 3239-3243. https://doi.org/10.1016/j.sbspro.2011.04.278
  19. Carabajal, I., Marshall, A., & Atchison, C. (2017). A synthesis of instructional strategies in geoscience education literature that address barriers to inclusion for students with disabilities. Journal of Geoscience Education, 65(4), 531-541. https://doi.org/10.5408/16-211.1
  20. Cassady, J., Kozlowski, A., & Kornmann, M. (2008). Electronic field trips as interactive learning events: Promoting student learning at a distance. Journal of Interactive Learning Research, 19(3), 439-454.
  21. Cheng, K., & Tsai, C. (2019). A case study of immersive virtual field trips in an elementary classroom: Students' learning experience and teacher-student interaction behaviors. Computers & Education, 140, 103600. https://doi.org/10.1016/j.compedu.2019.103600
  22. Chiarella, D., & Vurro, G. (2020). Fieldwork and disability: An overview for an inclusive experience. Geological Magazine, 157(11), 1933-1938. https://doi.org/10.1017/S0016756820000928
  23. Dolphin, G., Dutchak, A., Karchewski, B., & Cooper, J. (2019). Virtual field experiences in introductory geology: Addressing a capacity problem, but finding a pedagogical one. Journal of Geoscience Education, 67(2), 114-130. https://doi.org/10.1080/10899995.2018.1547034
  24. Elkins, J. T., & Elkins, N. M. (2007). Teaching geology in the field: Significant geoscience concept gains in entirely field-based introductory geology courses. Journal of Geoscience Education, 55(2), 126-132. https://doi.org/10.5408/1089-9995-55.2.126
  25. Elleven, R., Wircenski, M., Wircenski, J., & Nimon, K. (2006). Curriculum-based virtual field trips: Career development opportunities for students with disabilities. Journal for Vocational Special Needs Education, 28(3), 4-11.
  26. Francek, M. (2013). A compilation and review of over 500 geoscience misconceptions. International Journal of Science Education, 35(1), 31-64. https://doi.org/10.1080/09500693.2012.736644
  27. Gillett, J. (2011). The use of experiential education and field trips for learning. Journal of Educational Multimedia and Hypermedia, 20(2), 173-177.
  28. Han, I. (2020). Immersive virtual field trips in education: A mixed methods study on elementary students' presence and perceived learning. British Journal of Educational Technology, 51(2), 420-435. https://doi.org/10.1111/bjet.12842
  29. Hesthammer, J., Fossen, H., Sautter, M., Saether, B., & Johansen, S. (2002). The use of information technology to enhance learning in geological field trips. Journal of Geoscience Education, 50(5), 528-538. https://doi.org/10.5408/1089-9995-50.5.528
  30. Hurst, S. (1998). Use of "virtual" field trips in teaching introductory geology. Computers & Geosciences, 24(7), 653-658. https://doi.org/10.1016/S0098-3004(98)00043-0
  31. Hutchins, E., & Renner, N. (2012). Situated and embodied learning in the field. In K. A. Kastens, & C. A. Manduca (Eds.), Earth and mind II: A synthesis of research on thinking and learning in the geosciences (Vol. 486, pp. 181-182). Geological Society of America.
  32. Jacobson, A., Militello, R., & Baveye, P. (2009). Development of computer-assisted virtual field trips to support multidisciplinary learning. Computers & Education, 52(3), 571-580. https://doi.org/10.1016/j.compedu.2008.11.007
  33. Kenna, J., & Potter, S. (2018). Experiencing the world from inside the classroom: Using virtual field trips to enhance social studies instruction. The Social Studies, 109(5), 265-275. https://doi.org/10.1080/00377996.2018.1515719
  34. Kenna, J., & Russell, W. (2015). Tripping on the core: Utilizing field trips to enhance the common core. Social Studies Research & Practice (Board of Trustees of the University of Alabama), 10(2), 96-111. https://doi.org/10.1108/SSRP-02-2015-B0009
  35. King, C. (2008). Geoscience education: An overview. Studies in Science Education, 44(2), 187-222. https://doi.org/10.1080/03057260802264289
  36. Kirchen, D. (2011). Making and taking virtual field trips in pre-k and the primary grades. YC: Yong Children, 66(6), 22-26.
  37. Kisiel, J. (2006). Making field trips work. The Science Teacher, 73(1), 46-48.
  38. Klemm, E., & Tuthill, G. (2003). virtual field trips: Best practices. International Journal of Instructional Media, 30(2), 177-193.
  39. Klippel, A., Zhao, J., Jackson, K. L., La Femina, P., Stubbs, C., Wetzel, R., Blair, J., Wallgrun, J., & Oprean, D. (2019). Transforming earth science education through immersive experiences: Delivering on a long held promise. Journal of Educational Computing Research, 57(7), 1745-1771. https://doi.org/10.1177/0735633119854025
  40. Klippel, A., Zhao, J., Oprean, D., Wallgrun, J., Stubbs, C., La Femina, P., & Jackson, K. (2020). The value of being there: Toward a science of immersive virtual field trips. Virtual Reality, 24(4), 753-770. https://doi.org/10.1007/s10055-019-00418-5
  41. Kolb, D. (1984). Experiential learning: Experience as the source of learning and development. Prentice-Hall.
  42. Krakowka, A. (2012). Field trips as valuable learning experiences in geography courses. Journal of Geography, 111(6), 236-244. https://doi.org/10.1080/00221341.2012.707674
  43. Lakeoff, G., & Johnson, M. (1999). Philosophy in the flesh: The embodied mind and its challenge to western thought. New York, NY: Basic Books.
  44. Lin, M., Tutwiler, M., & Chang, C. (2011). Exploring the relationship between virtual learning environment preference, use, and learning outcomes in 10th grade earth science students. Learning, Media and Technology, 36(4), 399-417. https://doi.org/10.1080/17439884.2011.629660
  45. Litherland, K., & Stott, T. A. (2012). Virtual field sites: Losses and gains in authenticity with semantic technologies. Technology, Pedagogy and Education, 21(2), 213-230. https://doi.org/10.1080/1475939X.2012.697773
  46. Makransky, G., & Lilleholt, L. (2018). A structural equation modeling investigation of the emotional value of immersive virtual reality in education. Educational Technology Research and Development, 66(5), 1141-1164. https://doi.org/10.1007/s11423-018-9581-2
  47. Mathews, S., Andrews, L., & Luck, E. (2012). Developing a second life virtual field trip for university students: An action research approach. Educational Research, 54(1), 17-38. https://doi.org/10.1080/00131881.2012.658197
  48. Orion, N. (1989). Development of a high-school geology course based on field trips. Journal of Geological Education, 37(1), 13-17. https://doi.org/10.5408/0022-1368-37.1.13
  49. Orion, N. (1993). A model for the development and implementation of field trips as an integral part of the science curriculum. School Science and Mathematics, 93(6), 325-31. https://doi.org/10.1111/j.1949-8594.1993.tb12254.x
  50. Orion, N., & Hofstein, A. (1991). The measurement of students' attitudes towards scientific field trips. Science Education, 75(5), 513-523. https://doi.org/10.1002/sce.3730750503
  51. Petcovic, C., Stokes, A., & Caulkins, J. (2014). Geoscientists' perceptions of the valude of undergraduate field education. GSA Today, 24(7), 4-10. https://doi.org/10.1130/GSATG196A.1
  52. Petersen, G., Klingenberg, S., Mayer, R., & Makransky, G. (2020). The virtual field trip: Investigating how to optimize immersive virtual learning in climate change education. British Journal of Educational Technology, 51(6), 2099-2115. https://doi.org/10.1111/bjet.12991
  53. Pham, H., Dao, N., Pedro, A., Le, Q., Hussain, R., Cho, S., & Park, C. (2018). Virtual field trip for mobile construction safety education using 360-degree panoramic virtual reality. International Journal of English Education, 34(4), 1174-1191.
  54. Pierantozzi, M. (2008). Beyond the classroom walls-virtual field trips. Journal on School Educational Technology, 3(3), 1-4.
  55. Pugsley, J., Howell, J., Hartley, A., Buckley, S., Brackenridge, R., Schofield, N., Maxwell, G., Chmielewska, M., Ringdal K., Naumann, N., & Vanbiervliet, J. (2021). Virtual field-trips: Construction, delivery, and implications for future geological fieldtrips. Geoscience Communication Discussions, 1-33.
  56. Pyle, E. (2009). The evaluation of field course experiences: A framework for development, improvement, and reporting. Field Geology Education: Historical Perspectives and Modern Approaches: Geological Society of America Special Paper, 461, 341-356.
  57. Rotzien, J., Sincavage, R., Pellowski, C., Gavillot, Y., Filkorn, H., Cooper, S., Shannon, J., Yildiz, U., Sawyer, F., & Uzunlar, N. (2021). Field-based geoscience education during the COVID-19 Pandemic: Planning, execution, outcomes and forecasts. GSA Today, 31(2-4), 4-10.
  58. Seifan, M., Dada, O., & Berenjian, A. (2020). The effect of real and virtual construction field trips on students' perception and career aspiration. Sustainability, 12(3), 1200. https://doi.org/10.3390/su12031200
  59. Stainfield, J., Fisher, P., Ford, B., & Solem, M. (2000). International virtual field trips: A new direction? Journal of Geography in Higher Education, 24(2), 255-262. https://doi.org/10.1080/713677387
  60. Stokes, A., Feig, A., Atchison, C., & Gilley, B. (2019). Making geoscience fieldwork inclusive and accessible for students with disabilities. Geosphere, 15(6), 1809-1825. https://doi.org/10.1130/GES02006.1
  61. Sturm, H., & Bogner, F. (2010). Learning at workstations in two different environments: A museum and a classroom. Studies in Educational Evaluation, 36(1-2), 14-19. https://doi.org/10.1016/j.stueduc.2010.09.002
  62. Tuthill, G., & Klemm, E. (2002). Virtual field trips: Alternatives to actual field trips. International Journal of Instructional Media, 29(4), 453-468.
  63. Tutwiler, M., Lin, M., & Chang, C. (2013). Determining virtual environment "fit": The relationship between navigation style in a virtual field trip, student self-reported desire to visit the field trip site in the real world, and the purposes of science education. Journal of Science Education and Technology, 22(3), 351-361.
  64. Xie, P., & Cheng, K. (2021). Exploring the concept of novelty space to recreational vehicle travels. Journal of China Tourism Research, 17(2), 273-290. https://doi.org/10.1080/19388160.2020.1762819
  65. Xie, P., & Garner, K. (2009). An analysis of students' photos of the novelty space on a field trip. Journal of Teaching in Travel & Tourism, 9(3-4), 176-192. https://doi.org/10.1080/15313220903379240
  66. Zanetis, J. (2010). The beginner's guide to interactive virtual field trips. Learning & Leading with Technology, 37(6), 20-23.
  67. Zhao, J., LaFemina, P., Carr, J., Sajjadi, P., Wallgrun, J., & Klippel, A. (2020). Learning in the field: Comparison of desktop, immersive virtual reality, and actual field trips for place-based STEM education. In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (pp. 893-902).