DOI QR코드

DOI QR Code

The Outcome of Long QT Syndrome, a Korean Single Center Study

  • Kyung Jin Ahn (Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine) ;
  • Mi Kyoung Song (Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine) ;
  • Sang Yun Lee (Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine) ;
  • Ja Kyoung Yoon (Department of Pediatrics, Sejong General Hospital) ;
  • Gi Beom Kim (Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine) ;
  • Seil Oh (Department of Internal Medicine, Seoul National University Children's Hospital, Seoul National University College of Medicine) ;
  • Eun Jung Bae (Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine)
  • Received : 2022.03.14
  • Accepted : 2022.08.10
  • Published : 2022.10.01

Abstract

Background and Objectives: Although long QT syndrome (LQTS) is a potentially life-threatening inherited cardiac channelopathy, studies documenting the long-term clinical data of Korean patients with LQTS are scarce. Methods: This retrospective cohort study included 105 patients with LQTS (48 women; 45.7%) from a single tertiary center. The clinical outcomes were analyzed for the rate of freedom from breakthrough cardiac events (BCEs), additional treatment needed, and death. Results: LQTS was diagnosed at a median age of 11 (range, 0.003-80) years. Genetic testing was performed on 90 patients (yield, 71.1%). The proportions of genetically confirmed patients with LQTS types 1, 2, 3, and others were 34.4%, 12.2%, 12.2%, and 12.2%, respectively. In the symptomatic group (n=70), aborted cardiac arrest was observed in 30% of the patients. Treatments included medications in 60 patients (85.7%), implantable cardioverter-defibrillators in 27 (38.6%; median age, 17 years; range, 2-79 years), and left cardiac sympathetic denervation surgery in 7 (10%; median age, 13 years; range, 2-34). The 10-year BCE-free survival rate was 73.2%. By genotype, significant differences were observed in BCEs despite medication (p<0.001). The 10-year BCE-free survival rate was the highest in patients with LQTS type 1 (81.8%) and the lowest in those with multiple LQTS-associated mutations (LQTM). All patients with LQTS survived, except for one patient who had LQTM. Conclusions: Good long-term outcomes can be achieved by using recently developed genetically tailored management strategies for patients with LQTS.

Keywords

References

  1. Hayashi M, Shimizu W, Albert CM. The spectrum of epidemiology underlying sudden cardiac death. Circ Res 2015;116:1887-906. https://doi.org/10.1161/CIRCRESAHA.116.304521
  2. Tester DJ, Ackerman MJ. Postmortem long QT syndrome genetic testing for sudden unexplained death in the young. J Am Coll Cardiol 2007;49:240-6. https://doi.org/10.1016/j.jacc.2006.10.010
  3. Skinner JR, Crawford J, Smith W, et al. Prospective, population-based long QT molecular autopsy study of postmortem negative sudden death in 1 to 40 year olds. Heart Rhythm 2011;8:412-9. https://doi.org/10.1016/j.hrthm.2010.11.016
  4. Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 1995;80:795-803. https://doi.org/10.1016/0092-8674(95)90358-5
  5. Napolitano C, Priori SG, Schwartz PJ, et al. Genetic testing in the long QT syndrome: development and validation of an efficient approach to genotyping in clinical practice. JAMA 2005;294:2975-80. https://doi.org/10.1001/jama.294.23.2975
  6. Mizusawa Y, Horie M, Wilde AA. Genetic and clinical advances in congenital long QT syndrome. Circ J 2014;78:2827-33. https://doi.org/10.1253/circj.CJ-14-0905
  7. Abriel H, Zaklyazminskaya EV. Cardiac channelopathies: genetic and molecular mechanisms. Gene 2013;517:1-11. https://doi.org/10.1016/j.gene.2012.12.061
  8. Schwartz PJ, Crotti L. QTc behavior during exercise and genetic testing for the long-QT syndrome. Circulation 2011;124:2181-4. https://doi.org/10.1161/CIRCULATIONAHA.111.062182
  9. Priori SG, Wilde AA, Horie M, et al. HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes: document endorsed by HRS, EHRA, and APHRS in May 2013 and by ACCF, AHA, PACES, and AEPC in June 2013. Heart Rhythm 2013;10:1932-63. https://doi.org/10.1016/j.hrthm.2013.05.014
  10. Schwartz PJ, Crotti L, Insolia R. Long-QT syndrome: from genetics to management. Circ Arrhythm Electrophysiol 2012;5:868-77. https://doi.org/10.1161/CIRCEP.111.962019
  11. Sundstrom E, Jensen SM, Diamant UB, Rydberg A. Implantable cardioverter defibrillator treatment in long QT syndrome patients: a national study on adherence to international guidelines. Scand Cardiovasc J 2017;51:88-94. https://doi.org/10.1080/14017431.2016.1270463
  12. Bos JM, Bos KM, Johnson JN, Moir C, Ackerman MJ. Left cardiac sympathetic denervation in long QT syndrome: analysis of therapeutic nonresponders. Circ Arrhythm Electrophysiol 2013;6:705-11. https://doi.org/10.1161/CIRCEP.113.000102
  13. Garson A Jr, Dick M 2nd, Fournier A, et al. The long QT syndrome in children. An international study of 287 patients. Circulation 1993;87:1866-72. https://doi.org/10.1161/01.CIR.87.6.1866
  14. Koponen M, Marjamaa A, Hiippala A, et al. Follow-up of 316 molecularly defined pediatric long-QT syndrome patients: clinical course, treatments, and side effects. Circ Arrhythm Electrophysiol 2015;8:815-23. https://doi.org/10.1161/CIRCEP.114.002654
  15. Rohatgi RK, Sugrue A, Bos JM, et al. Contemporary outcomes in patients with long QT syndrome. J Am Coll Cardiol 2017;70:453-62. https://doi.org/10.1016/j.jacc.2017.05.046
  16. Goldenberg I, Moss AJ, Peterson DR, et al. Risk factors for aborted cardiac arrest and sudden cardiac death in children with the congenital long-QT syndrome. Circulation 2008;117:2184-91. https://doi.org/10.1161/CIRCULATIONAHA.107.701243
  17. Lee YS, Kwon BS, Kim GB, et al. Long QT syndrome: a Korean single center study. J Korean Med Sci 2013;28:1454-60. https://doi.org/10.3346/jkms.2013.28.10.1454
  18. Hobbs JB, Peterson DR, Moss AJ, et al. Risk of aborted cardiac arrest or sudden cardiac death during adolescence in the long-QT syndrome. JAMA 2006;296:1249-54. https://doi.org/10.1001/jama.296.10.1249
  19. Drici MD, Burklow TR, Haridasse V, Glazer RI, Woosley RL. Sex hormones prolong the QT interval and downregulate potassium channel expression in the rabbit heart. Circulation 1996;94:1471-4. https://doi.org/10.1161/01.CIR.94.6.1471
  20. Barsheshet A, Dotsenko O, Goldenberg I. Genotype-specific risk stratification and management of patients with long QT syndrome. Ann Noninvasive Electrocardiol 2013;18:499-509. https://doi.org/10.1111/anec.12117
  21. D'Adamo P, Fassone L, Gedeon A, et al. The X-linked gene G4.5 is responsible for different infantile dilated cardiomyopathies. Am J Hum Genet 1997;61:862-7. https://doi.org/10.1086/514886
  22. Seo SH, Kim SY, Cho SI, et al. Application of multigene panel sequencing in patients with prolonged rate-corrected QT interval and no pathogenic variants detected in KCNQ1, KCNH2, and SCN5A. Ann Lab Med 2018;38:54-8. https://doi.org/10.3343/alm.2018.38.1.54
  23. Moss AJ, Zareba W, Hall WJ, et al. Effectiveness and limitations of beta-blocker therapy in congenital long-QT syndrome. Circulation 2000;101:616-23. https://doi.org/10.1161/01.CIR.101.6.616
  24. Mazzanti A, Maragna R, Faragli A, et al. Gene-specific therapy with mexiletine reduces arrhythmic events in patients with long QT syndrome type 3. J Am Coll Cardiol 2016;67:1053-8. https://doi.org/10.1016/j.jacc.2015.12.033
  25. Niaz T, Bos JM, Sorensen KB, Moir C, Ackerman MJ. Left cardiac sympathetic denervation monotherapy in patients with congenital long QT syndrome. Circ Arrhythm Electrophysiol 2020;13:e008830.
  26. Mazzanti A, Maragna R, Vacanti G, et al. Interplay between genetic substrate, QTc duration, and arrhythmia risk in patients with long QT syndrome. J Am Coll Cardiol 2018;71:1663-71. https://doi.org/10.1016/j.jacc.2018.01.078
  27. Horner JM, Kinoshita M, Webster TL, Haglund CM, Friedman PA, Ackerman MJ. Implantable cardioverter defibrillator therapy for congenital long QT syndrome: a single-center experience. Heart Rhythm 2010;7:1616-22. https://doi.org/10.1016/j.hrthm.2010.08.023
  28. Schwartz PJ, Spazzolini C, Priori SG, et al. Who are the long-QT syndrome patients who receive an implantable cardioverter-defibrillator and what happens to them?: data from the European Long-QT Syndrome Implantable Cardioverter-Defibrillator (LQTS ICD) Registry. Circulation 2010;122:1272-82. https://doi.org/10.1161/CIRCULATIONAHA.110.950147
  29. Gaba P, Bos JM, Cannon BC, et al. Implantable cardioverter-defibrillator explantation for overdiagnosed or overtreated congenital long QT syndrome. Heart Rhythm 2016;13:879-85. https://doi.org/10.1016/j.hrthm.2015.12.008