DOI QR코드

DOI QR Code

Aortic Stenosis: New Insights in Diagnosis, Treatment, and Prevention

  • Saki Ito (Department of Cardiovascular Medicine, Mayo Clinic) ;
  • Jae K. Oh (Department of Cardiovascular Medicine, Mayo Clinic)
  • 투고 : 2022.08.26
  • 심사 : 2022.09.07
  • 발행 : 2022.10.01

초록

Aortic stenosis (AS) is one of the most common valvular heart diseases and the number of patients with AS is expected to increase globally as the older population is growing fast. Since the majority of patients are elderly, AS is no longer a simple valvular heart disease of left ventricular outflow obstruction but is accompanied by other cardiac and comorbid conditions. Because of the significant variations of the disease, identifying patients at high risk and even earlier detection of patients with AS before developing symptomatic severe AS is becoming increasingly important. With the proven of efficacy and safety of transcatheter aortic valve replacement (TAVR) in the severe AS population, there is a growing interest in applying TAVR in those with less than severe AS. A medical therapy to reduce or prevent the progression in AS is actively investigated by several randomized control trials. In this review, we will summarize the most recent findings in AS and discuss potential future management strategies of patients with AS.

키워드

참고문헌

  1. Bonow RO, Carabello B, de Leon AC Jr, et al. Guidelines for the management of patients with valvular heart disease: executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Patients with Valvular Heart Disease). Circulation 1998;98:1949-84. https://doi.org/10.1161/01.CIR.98.18.1949
  2. American College of Cardiology/American Heart Association Task Force on Practice GuidelinesSociety of Cardiovascular AnesthesiologistsSociety for Cardiovascular Angiography and Interventions ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to revise the 1998 guidelines for the management of patients with valvular heart disease): developed in collaboration with the Society of Cardiovascular Anesthesiologists: endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. Circulation 2006;114:e84-231. https://doi.org/10.1161/CIRCULATIONAHA.106.177303
  3. Baumgartner H, Falk V, Bax JJ, et al. 2017 ESC/EACTS guidelines for the management of valvular heart disease. Eur Heart J 2017;38:2739-91. https://doi.org/10.1093/eurheartj/ehx391
  4. Writing Committee Members, Otto CM, Nishimura RA, et al. ACC/AHA guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol 2021;77:e25-197. https://doi.org/10.1016/j.jacc.2020.11.018
  5. Nishimura RA, Otto CM, Bonow RO, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014;129:2440-92. https://doi.org/10.1161/CIR.0000000000000029
  6. Vahanian A, Beyersdorf F, Praz F, et al. ESC/EACTS guidelines for the management of valvular heart disease. Eur Heart J 2022;43:561-362.
  7. Minners J, Allgeier M, Gohlke-Baerwolf C, Kienzle RP, Neumann FJ, Jander N. Inconsistencies of echocardiographic criteria for the grading of aortic valve stenosis. Eur Heart J 2008;29:1043-8. https://doi.org/10.1093/eurheartj/ehm543
  8. Carabello BA, Paulus WJ. Aortic stenosis. Lancet 2009;373:956-66. https://doi.org/10.1016/S0140-6736(09)60211-7
  9. Koide M, Nagatsu M, Zile MR, et al. Premorbid determinants of left ventricular dysfunction in a novel model of gradually induced pressure overload in the adult canine. Circulation 1997;95:1601-10. https://doi.org/10.1161/01.CIR.95.6.1601
  10. Ito S, Pislaru C, Miranda WR, et al. Left ventricular contractility and wall stress in patients with aortic stenosis with preserved or reduced ejection fraction. JACC Cardiovasc Imaging 2020;13:357-69. https://doi.org/10.1016/j.jcmg.2019.01.009
  11. Ward-Smith AJ. Internal Fluid Flow: The Fluid Dynamics of Flow in Pipes and Ducts. New York (NY): Oxford University Press; 1980.
  12. Otto CM, Burwash IG, Legget ME, et al. Prospective study of asymptomatic valvular aortic stenosis. Clinical, echocardiographic, and exercise predictors of outcome. Circulation 1997;95:2262-70. https://doi.org/10.1161/01.CIR.95.9.2262
  13. Pellikka PA, Sarano ME, Nishimura RA, et al. Outcome of 622 adults with asymptomatic, hemodynamically significant aortic stenosis during prolonged follow-up. Circulation 2005;111:3290-5. https://doi.org/10.1161/CIRCULATIONAHA.104.495903
  14. Ito S, Miranda WR, Nkomo VT, Lewis BR, Oh JK. Sex differences in LV remodeling and hemodynamics in aortic stenosis: sex-specific criteria for severe stenosis? JACC Cardiovasc Imaging 2022;15:1175-89. https://doi.org/10.1016/j.jcmg.2022.02.007
  15. Poirier P, Giles TD, Bray GA, et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association scientific statement on obesity and heart disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 2006;113:898-918. https://doi.org/10.1161/CIRCULATIONAHA.106.171016
  16. Vriesendorp MD, Groenwold RHH, Herrmann HC, et al. The clinical implications of body surface area as a poor proxy for cardiac output. Struct Heart 2021;5:582-7. https://doi.org/10.1080/24748706.2021.1968089
  17. Namasivayam M, He W, Churchill TW, et al. Transvalvular flow rate determines prognostic value of aortic valve area in aortic stenosis. J Am Coll Cardiol 2020;75:1758-69. https://doi.org/10.1016/j.jacc.2020.02.046
  18. Tobin JR Jr, Rahimtoola SH, Blundell PE, Swan HJ. Percentage of left ventricular stroke work loss. A simple hemodynamic concept for estimation of severity in valvular aortic stenosis. Circulation 1967;35:868-79. https://doi.org/10.1161/01.CIR.35.5.868
  19. Jander N, Gohlke-Barwolf C, Bahlmann E, et al. Indexing aortic valve area by body surface area increases the prevalence of severe aortic stenosis. Heart 2014;100:28-33. https://doi.org/10.1136/heartjnl-2013-304443
  20. Statista Inc. Obesity rate in South Korea 2008-2020 [Internet]. New York (NY): Statista Inc.; 2022 [cited 2022 Aug 10]. Available from: https://www.statista.com/statistics/978106/south-korea-obesity-rate/.
  21. Rogge BP, Cramariuc D, Lonnebakken MT, et al. Effect of overweight and obesity on cardiovascular events in asymptomatic aortic stenosis: a SEAS substudy (Simvastatin Ezetimibe in Aortic Stenosis). J Am Coll Cardiol 2013;62:1683-90. https://doi.org/10.1016/j.jacc.2013.04.081
  22. Coisne A, Ninni S, Edme JL, et al. Obesity paradox in the clinical significance of effective prosthetic orifice area after aortic valve replacement. JACC Cardiovasc Imaging 2019;12:208-10. https://doi.org/10.1016/j.jcmg.2018.04.018
  23. National Institutes of Health. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults--the evidence report. Obes Res 1998;6 Suppl 2:51S-209S.
  24. Bogart DB, Murphy BL, Wong BY, Pugh DM, Dunn MI. Progression of aortic stenosis. Chest 1979;76:391-6. https://doi.org/10.1378/chest.76.4.391
  25. Wagner S, Selzer A. Patterns of progression of aortic stenosis: a longitudinal hemodynamic study. Circulation 1982;65:709-12. https://doi.org/10.1161/01.CIR.65.4.709
  26. Ito S, Miranda WR, Nkomo VT, et al. Reduced left ventricular ejection fraction in patients with aortic stenosis. J Am Coll Cardiol 2018;71:1313-21. https://doi.org/10.1016/j.jacc.2018.01.045
  27. Strange G, Stewart S, Celermajer D, et al. Poor long-term survival in patients with moderate aortic stenosis. J Am Coll Cardiol 2019;74:1851-63. https://doi.org/10.1016/j.jacc.2019.08.004
  28. Dahl JS, Eleid MF, Pislaru SV, Scott CG, Connolly HM, Pellikka PA. Development of paradoxical low-flow, low-gradient severe aortic stenosis. Heart 2015;101:1015-23. https://doi.org/10.1136/heartjnl-2014-306838
  29. Alcon B, Martinez-Legazpi P, Stewart S, et al. Transvalvular jet velocity, aortic valve area, mortality, and cardiovascular outcomes. Eur Heart J Cardiovasc Imaging 2022;23:601-12. https://doi.org/10.1093/ehjci/jeac003
  30. Ross J Jr, Braunwald E. Aortic stenosis. Circulation 1968;38:61-7.
  31. Park SJ, Enriquez-Sarano M, Chang SA, et al. Hemodynamic patterns for symptomatic presentations of severe aortic stenosis. JACC Cardiovasc Imaging 2013;6:137-46. https://doi.org/10.1016/j.jcmg.2012.10.013
  32. Biner S, Rafique AM, Goykhman P, Morrissey RP, Naghi J, Siegel RJ. Prognostic value of E/E' ratio in patients with unoperated severe aortic stenosis. JACC Cardiovasc Imaging 2010;3:899-907. https://doi.org/10.1016/j.jcmg.2010.07.005
  33. Chang SA, Park PW, Sung K, et al. Noninvasive estimate of left ventricular filling pressure correlated with early and midterm postoperative cardiovascular events after isolated aortic valve replacement in patients with severe aortic stenosis. J Thorac Cardiovasc Surg 2010;140:1361-6. https://doi.org/10.1016/j.jtcvs.2010.02.022
  34. Dahl JS, Videbaek L, Poulsen MK, et al. Noninvasive assessment of filling pressure and left atrial pressure overload in severe aortic valve stenosis: relation to ventricular remodeling and clinical outcome after aortic valve replacement. J Thorac Cardiovasc Surg 2011;142:e77-83. https://doi.org/10.1016/j.jtcvs.2011.01.032
  35. Taniguchi T, Morimoto T, Shiomi H, et al. Prognostic impact of left ventricular ejection fraction in patients with severe aortic stenosis. JACC Cardiovasc Interv 2018;11:145-57. https://doi.org/10.1016/j.jcin.2017.08.036
  36. Dahl JS, Eleid MF, Michelena HI, et al. Effect of left ventricular ejection fraction on postoperative outcome in patients with severe aortic stenosis undergoing aortic valve replacement. Circ Cardiovasc Imaging 2015;8:e002917.
  37. Lancellotti P, Magne J, Dulgheru R, et al. Outcomes of patients with asymptomatic aortic stenosis followed up in heart valve clinics. JAMA Cardiol 2018;3:1060-8. https://doi.org/10.1001/jamacardio.2018.3152
  38. Dahl JS, Videbaek L, Poulsen MK, Rudbaek TR, Pellikka PA, Moller JE. Global strain in severe aortic valve stenosis: relation to clinical outcome after aortic valve replacement. Circ Cardiovasc Imaging 2012;5:613-20. https://doi.org/10.1161/CIRCIMAGING.112.973834
  39. Fries B, Liu D, Gaudron P, et al. Role of global longitudinal strain in the prediction of outcome in patients with severe aortic valve stenosis. Am J Cardiol 2017;120:640-7. https://doi.org/10.1016/j.amjcard.2017.05.032
  40. Ng AC, Prihadi EA, Antoni ML, et al. Left ventricular global longitudinal strain is predictive of all-cause mortality independent of aortic stenosis severity and ejection fraction. Eur Heart J Cardiovasc Imaging 2018;19:859-67. https://doi.org/10.1093/ehjci/jex189
  41. Kusunose K, Goodman A, Parikh R, et al. Incremental prognostic value of left ventricular global longitudinal strain in patients with aortic stenosis and preserved ejection fraction. Circ Cardiovasc Imaging 2014;7:938-45. https://doi.org/10.1161/CIRCIMAGING.114.002041
  42. Ito S, Miranda WR, Nkomo VT, et al. Prognostic risk stratification of patients with moderate aortic stenosis. J Am Soc Echocardiogr 2021;34:248-56. https://doi.org/10.1016/j.echo.2020.10.012
  43. Zhu D, Ito S, Miranda WR, et al. Left ventricular global longitudinal strain is associated with long-term outcomes in moderate aortic stenosis. Circ Cardiovasc Imaging 2020;13:e009958.
  44. Lee H, Park JB, Yoon YE, et al. Noncontrast myocardial T1 mapping by cardiac magnetic resonance predicts outcome in patients with aortic stenosis. JACC Cardiovasc Imaging 2018;11:974-83. https://doi.org/10.1016/j.jcmg.2017.09.005
  45. Chin CW, Everett RJ, Kwiecinski J, et al. Myocardial fibrosis and cardiac decompensation in aortic stenosis. JACC Cardiovasc Imaging 2017;10:1320-33. https://doi.org/10.1016/j.jcmg.2016.10.007
  46. Weidemann F, Herrmann S, Stork S, et al. Impact of myocardial fibrosis in patients with symptomatic severe aortic stenosis. Circulation 2009;120:577-84. https://doi.org/10.1161/CIRCULATIONAHA.108.847772
  47. Musa TA, Treibel TA, Vassiliou VS, et al. Myocardial scar and mortality in severe aortic stenosis. Circulation 2018;138:1935-47. https://doi.org/10.1161/CIRCULATIONAHA.117.032839
  48. Mentias A, Sarrazin MV, Desai M, Kapadia S, Cram P, Girotra S. Expansion of transcatheter aortic valve replacement in the United States. Am Heart J 2021;234:23-30. https://doi.org/10.1016/j.ahj.2020.12.018
  49. Leon MB, Smith CR, Mack M, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med 2010;363:1597-607. https://doi.org/10.1056/NEJMoa1008232
  50. Adams DH, Popma JJ, Reardon MJ, et al. Transcatheter aortic-valve replacement with a self-expanding prosthesis. N Engl J Med 2014;370:1790-8. https://doi.org/10.1056/NEJMoa1400590
  51. Smith CR, Leon MB, Mack MJ, et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med 2011;364:2187-98. https://doi.org/10.1056/NEJMoa1103510
  52. Leon MB, Smith CR, Mack MJ, et al. Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N Engl J Med 2016;374:1609-20. https://doi.org/10.1056/NEJMoa1514616
  53. Forrest JK, Mangi AA, Popma JJ, et al. Early outcomes with the Evolut PRO repositionable self-expanding transcatheter aortic valve with pericardial wrap. JACC Cardiovasc Interv 2018;11:160-8. https://doi.org/10.1016/j.jcin.2017.10.014
  54. Mack MJ, Leon MB, Thourani VH, et al. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N Engl J Med 2019;380:1695-705. https://doi.org/10.1056/NEJMoa1814052
  55. Popma JJ, Deeb GM, Yakubov SJ, et al. Transcatheter aortic-valve replacement with a self-expanding valve in low-risk patients. N Engl J Med 2019;380:1706-15. https://doi.org/10.1056/NEJMoa1816885
  56. Carroll JD, Mack MJ, Vemulapalli S, et al. STS-ACC TVT registry of transcatheter aortic valve replacement. J Am Coll Cardiol 2020;76:2492-516. https://doi.org/10.1016/j.jacc.2020.09.595
  57. Hahn RT, Leipsic J, Douglas PS, et al. Comprehensive echocardiographic assessment of normal transcatheter valve function. JACC Cardiovasc Imaging 2019;12:25-34. https://doi.org/10.1016/j.jcmg.2018.04.010
  58. Lee YJ, Lee SJ, Hong SJ, et al. Comparison of transcatheter aortic valve replacement between self-expanding versus balloon-expandable valves in patients with small aortic annulus. Korean Circ J 2021;51:222-31. https://doi.org/10.4070/kcj.2020.0409
  59. Kodali SK, Williams MR, Smith CR, et al. Two-year outcomes after transcatheter or surgical aortic-valve replacement. N Engl J Med 2012;366:1686-95. https://doi.org/10.1056/NEJMoa1200384
  60. Popma JJ, Adams DH, Reardon MJ, et al. Transcatheter aortic valve replacement using a self-expanding bioprosthesis in patients with severe aortic stenosis at extreme risk for surgery. J Am Coll Cardiol 2014;63:1972-81. https://doi.org/10.1016/j.jacc.2014.02.556
  61. Thyregod HG, Steinbruchel DA, Ihlemann N, et al. Transcatheter versus surgical aortic valve replacement in patients with severe aortic valve stenosis: 1-year results from the all-comers NOTION randomized clinical trial. J Am Coll Cardiol 2015;65:2184-94. https://doi.org/10.1016/j.jacc.2015.03.014
  62. Reardon MJ, Van Mieghem NM, Popma JJ, et al. Surgical or transcatheter aortic-valve replacement in intermediate-risk patients. N Engl J Med 2017;376:1321-31. https://doi.org/10.1056/NEJMoa1700456
  63. Grube E, Van Mieghem NM, Bleiziffer S, et al. Clinical outcomes with a repositionable self-expanding transcatheter aortic valve prosthesis: the international FORWARD study. J Am Coll Cardiol 2017;70:845-53. https://doi.org/10.1016/j.jacc.2017.06.045
  64. Manoharan G, Grube E, Van Mieghem NM, et al. Thirty-day clinical outcomes of the Evolut PRO self-expanding transcatheter aortic valve: the international FORWARD PRO study. EuroIntervention 2020;16:850-7. https://doi.org/10.4244/EIJ-D-20-00279
  65. Bourantas CV, Modolo R, Baumbach A, et al. The evolution of device technology in transcatheter aortic valve implantation. EuroIntervention 2019;14:e1826-33. https://doi.org/10.4244/EIJ-D-18-01048
  66. Tang GH, Zaid S, Michev I, et al. "Cusp-overlap" view simplifies fluoroscopy-guided implantation of self-expanding valve in transcatheter aortic valve replacement. JACC Cardiovasc Interv 2018;11:1663-5. https://doi.org/10.1016/j.jcin.2018.03.018
  67. Yudi MB, Sharma SK, Tang GH, Kini A. Coronary angiography and percutaneous coronary intervention after transcatheter aortic valve replacement. J Am Coll Cardiol 2018;71:1360-78. https://doi.org/10.1016/j.jacc.2018.01.057
  68. Ruck A, Saleh N, Glaser N. Outcomes following permanent pacemaker implantation after transcatheter aortic valve replacement: SWEDEHEART observational study. JACC Cardiovasc Interv 2021;14:2173-81. https://doi.org/10.1016/j.jcin.2021.07.043
  69. Auffret V, Puri R, Urena M, et al. Conduction disturbances after transcatheter aortic valve replacement: current status and future perspectives. Circulation 2017;136:1049-69. https://doi.org/10.1161/CIRCULATIONAHA.117.028352
  70. Van Belle E, Juthier F, Susen S, et al. Postprocedural aortic regurgitation in balloon-expandable and self-expandable transcatheter aortic valve replacement procedures: analysis of predictors and impact on long-term mortality: insights from the FRANCE2 Registry. Circulation 2014;129:1415-27. https://doi.org/10.1161/CIRCULATIONAHA.113.002677
  71. Abdel-Wahab M, Zahn R, Horack M, et al. Aortic regurgitation after transcatheter aortic valve implantation: incidence and early outcome. Results from the German transcatheter aortic valve interventions registry. Heart 2011;97:899-906. https://doi.org/10.1136/hrt.2010.217158
  72. Gotzmann M, Pljakic A, Bojara W, et al. Transcatheter aortic valve implantation in patients with severe symptomatic aortic valve stenosis-predictors of mortality and poor treatment response. Am Heart J 2011;162:238-245.e1. https://doi.org/10.1016/j.ahj.2011.05.011
  73. Tamburino C, Capodanno D, Ramondo A, et al. Incidence and predictors of early and late mortality after transcatheter aortic valve implantation in 663 patients with severe aortic stenosis. Circulation 2011;123:299-308. https://doi.org/10.1161/CIRCULATIONAHA.110.946533
  74. Ito S, Miranda WR, Jaffe AS, Oh JK. Prognostic value of N-terminal pro-form B-type natriuretic peptide in patients with moderate aortic stenosis. Am J Cardiol 2020;125:1566-70. https://doi.org/10.1016/j.amjcard.2020.02.004
  75. Moon I, Kim M, Choi JW, et al. Early surgery versus watchful waiting in patients with moderate aortic stenosis and left ventricular systolic dysfunction. Korean Circ J 2020;50:791-800. https://doi.org/10.4070/kcj.2020.0037
  76. Jean G, Van Mieghem NM, Gegenava T, et al. Moderate aortic stenosis in patients with heart failure and reduced ejection fraction. J Am Coll Cardiol 2021;77:2796-803. https://doi.org/10.1016/j.jacc.2021.04.014
  77. Lee JH. Moderate aortic valve stenosis with left ventricular systolic dysfunction: potential role of early aortic valve replacement. Korean Circ J 2020;50:801-3. https://doi.org/10.4070/kcj.2020.0301
  78. Egbe AC, Luis SA, Padang R, Warnes CA. Outcomes in moderate mixed aortic valve disease: Is it time for a paradigm shift? J Am Coll Cardiol 2016;67:2321-9. https://doi.org/10.1016/j.jacc.2016.03.509
  79. Foroutan F, Guyatt GH, O'Brien K, et al. Prognosis after surgical replacement with a bioprosthetic aortic valve in patients with severe symptomatic aortic stenosis: systematic review of observational studies. BMJ 2016;354:i5065.
  80. Une D, Ruel M, David TE. Twenty-year durability of the aortic Hancock II bioprosthesis in young patients: is it durable enough? Eur J Cardiothorac Surg 2014;46:825-30. https://doi.org/10.1093/ejcts/ezu014
  81. Ueyama H, Kuno T, Takagi H, et al. Meta-analysis comparing valve durability among different transcatheter and surgical aortic valve bioprosthesis. Am J Cardiol 2021;158:104-11. https://doi.org/10.1016/j.amjcard.2021.07.046
  82. Pibarot P, Ternacle J, Jaber WA, et al. Structural deterioration of transcatheter versus surgical aortic valve bioprostheses in the PARTNER-2 trial. J Am Coll Cardiol 2020;76:1830-43. https://doi.org/10.1016/j.jacc.2020.08.049
  83. VARC-3 Writing Committee, Genereux P, Piazza N, et al. Valve Academic Research Consortium 3: updated endpoint definitions for aortic valve clinical research. J Am Coll Cardiol 2021;77:2717-46. https://doi.org/10.1016/j.jacc.2021.02.038
  84. Capodanno D, Petronio AS, Prendergast B, et al. Standardized definitions of structural deterioration and valve failure in assessing long-term durability of transcatheter and surgical aortic bioprosthetic valves: a consensus statement from the European Association of Percutaneous Cardiovascular Interventions (EAPCI) endorsed by the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J 2017;38:3382-90. https://doi.org/10.1093/eurheartj/ehx303
  85. Pawade TA, Newby DE, Dweck MR. Calcification in aortic stenosis: the skeleton key. J Am Coll Cardiol 2015;66:561-77. https://doi.org/10.1016/j.jacc.2015.05.066
  86. Otto CM. Calcific aortic stenosis--time to look more closely at the valve. N Engl J Med 2008;359:1395-8. https://doi.org/10.1056/NEJMe0807001
  87. Otto CM, Kuusisto J, Reichenbach DD, Gown AM, O'Brien KD. Characterization of the early lesion of 'degenerative' valvular aortic stenosis. Histological and immunohistochemical studies. Circulation 1994;90:844-53. https://doi.org/10.1161/01.CIR.90.2.844
  88. Nagy E, Eriksson P, Yousry M, et al. Valvular osteoclasts in calcification and aortic valve stenosis severity. Int J Cardiol 2013;168:2264-71. https://doi.org/10.1016/j.ijcard.2013.01.207
  89. Pawade TA, Doris MK, Bing R, et al. Effect of denosumab or alendronic acid on the progression of aortic stenosis: a double-blind randomized controlled trial. Circulation 2021;143:2418-27. https://doi.org/10.1161/CIRCULATIONAHA.121.053708
  90. Rossebo AB, Pedersen TR, Boman K, et al. Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis. N Engl J Med 2008;359:1343-56. https://doi.org/10.1056/NEJMoa0804602
  91. Chan KL, Teo K, Dumesnil JG, Ni A, Tam J; ASTRONOMER Investigators. Effect of lipid lowering with rosuvastatin on progression of aortic stenosis: results of the aortic stenosis progression observation: measuring effects of rosuvastatin (ASTRONOMER) trial. Circulation 2010;121:306-14. https://doi.org/10.1161/CIRCULATIONAHA.109.900027
  92. Cowell SJ, Newby DE, Prescott RJ, et al. A randomized trial of intensive lipid-lowering therapy in calcific aortic stenosis. N Engl J Med 2005;352:2389-97. https://doi.org/10.1056/NEJMoa043876
  93. Bull S, Loudon M, Francis JM, et al. A prospective, double-blind, randomized controlled trial of the angiotensin-converting enzyme inhibitor Ramipril In Aortic Stenosis (RIAS trial). Eur Heart J Cardiovasc Imaging 2015;16:834-41. https://doi.org/10.1093/ehjci/jev043
  94. Bergmark BA, O'Donoghue ML, Murphy SA, et al. An exploratory analysis of proprotein convertase subtilisin/kexin type 9 inhibition and aortic stenosis in the FOURIER trial. JAMA Cardiol 2020;5:709-13. https://doi.org/10.1001/jamacardio.2020.0728
  95. Choi B, Lee S, Kim SM, et al. Dipeptidyl peptidase-4 induces aortic valve calcification by inhibiting insulin-like growth factor-1 signaling in valvular interstitial cells. Circulation 2017;135:1935-50. https://doi.org/10.1161/CIRCULATIONAHA.116.024270
  96. Lee S, Lee SA, Choi B, et al. Dipeptidyl peptidase-4 inhibition to prevent progression of calcific aortic stenosis. Heart 2020;106:1824-31. https://doi.org/10.1136/heartjnl-2020-317024
  97. Kwon JM, Lee SY, Jeon KH, et al. Deep learning-based algorithm for detecting aortic stenosis using electrocardiography. J Am Heart Assoc 2020;9:e014717.
  98. Cohen-Shelly M, Attia ZI, Friedman PA, et al. Electrocardiogram screening for aortic valve stenosis using artificial intelligence. Eur Heart J 2021;42:2885-96. https://doi.org/10.1093/eurheartj/ehab153
  99. Ueda D, Yamamoto A, Ehara S, et al. Artificial intelligence-based detection of aortic stenosis from chest radiographs. Digit Health 2022;3:20-8. https://doi.org/10.1093/ehjdh/ztab102
  100. Nkomo VT, Gardin JM, Skelton TN, Gottdiener JS, Scott CG, Enriquez-Sarano M. Burden of valvular heart diseases: a population-based study. Lancet 2006;368:1005-11. https://doi.org/10.1016/S0140-6736(06)69208-8
  101. Osnabrugge RL, Mylotte D, Head SJ, et al. Aortic stenosis in the elderly: disease prevalence and number of candidates for transcatheter aortic valve replacement: a meta-analysis and modeling study. J Am Coll Cardiol 2013;62:1002-12. https://doi.org/10.1016/j.jacc.2013.05.015
  102. Genereux P, Pibarot P, Redfors B, et al. Staging classification of aortic stenosis based on the extent of cardiac damage. Eur Heart J 2017;38:3351-8. https://doi.org/10.1093/eurheartj/ehx381
  103. Kwak S, Lee Y, Ko T, et al. Unsupervised cluster analysis of patients with aortic stenosis reveals distinct population with different phenotypes and outcomes. Circ Cardiovasc Imaging 2020;13:e009707.
  104. Casaclang-Verzosa G, Shrestha S, Khalil MJ, et al. Network tomography for understanding phenotypic presentations in aortic stenosis. JACC Cardiovasc Imaging 2019;12:236-48. https://doi.org/10.1016/j.jcmg.2018.11.025
  105. Sengupta PP, Shrestha S, Kagiyama N, et al. A machine-learning framework to identify distinct phenotypes of aortic stenosis severity. JACC Cardiovasc Imaging 2021;14:1707-20. https://doi.org/10.1016/j.jcmg.2021.03.020
  106. Attia ZI, Lerman G, Friedman PA. Deep neural networks learn by using human-selected electrocardiogram features and novel features. Digit Health 2021;2:446-55. https://doi.org/10.1093/ehjdh/ztab060