Acknowledgement
This work was supported by National Research Foundation of Korea (NRF) funded by the Korean government (Ministry of Science and ICT; MSIT) (No. 2020R1A2C3003784, No. 2020M3A9I4038454), the Faculty Research Assistance Program of Yonsei University College of Medicine (6-2021-0178), the Parts/Materials Development Project in 2021 (20016564) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea), the Brain Korea 21 Project for Medical Science, Yonsei University, the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI) funded by the Ministry of Health & Welfare, Republic of Korea (HV22C0138), grants from NHLBI (R01HL150877), AHA Career Development Award (19CDA34760061) and AHA Transformational Project Award (20TPA35490282).
References
- Virani SS, Alonso A, Aparicio HJ, et al. Heart disease and stroke statistics-2021 update: a report from the American Heart Association. Circulation 2021;143:e254-743.
- Bhagra SK, Pettit S, Parameshwar J. Cardiac transplantation: indications, eligibility and current outcomes. Heart 2019;105:252-60. https://doi.org/10.1136/heartjnl-2018-313103
- Farber A. Chronic limb-threatening ischemia. N Engl J Med 2018;379:171-80. https://doi.org/10.1056/NEJMcp1709326
- Kim W. Critical determinants of chronic limb threatening ischemia after endovascular treatment. Korean Circ J 2022;52:441-3. https://doi.org/10.4070/kcj.2022.0064
- Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131:861-72. https://doi.org/10.1016/j.cell.2007.11.019
- Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007;318:1917-20. https://doi.org/10.1126/science.1151526
- Wang ZZ, Au P, Chen T, et al. Endothelial cells derived from human embryonic stem cells form durable blood vessels in vivo. Nat Biotechnol 2007;25:317-8. https://doi.org/10.1038/nbt1287
- Taura D, Sone M, Homma K, et al. Induction and isolation of vascular cells from human induced pluripotent stem cells--brief report. Arterioscler Thromb Vasc Biol 2009;29:1100-3. https://doi.org/10.1161/ATVBAHA.108.182162
- Rufaihah AJ, Huang NF, Jame S, et al. Endothelial cells derived from human iPSCS increase capillary density and improve perfusion in a mouse model of peripheral arterial disease. Arterioscler Thromb Vasc Biol 2011;31:e72-9. https://doi.org/10.1161/ATVBAHA.111.230938
- Lee SJ, Sohn YD, Andukuri A, et al. Enhanced therapeutic and long-term dynamic vascularization effects of human pluripotent stem cell-derived endothelial cells encapsulated in a nanomatrix gel. Circulation 2017;136:1939-54. https://doi.org/10.1161/CIRCULATIONAHA.116.026329
- Clayton ZE, Yuen GS, Sadeghipour S, et al. A comparison of the pro-angiogenic potential of human induced pluripotent stem cell derived endothelial cells and induced endothelial cells in a murine model of peripheral arterial disease. Int J Cardiol 2017;234:81-9. https://doi.org/10.1016/j.ijcard.2017.01.125
- Lai WH, Ho JC, Chan YC, et al. Attenuation of hind-limb ischemia in mice with endothelial-like cells derived from different sources of human stem cells. PLoS One 2013;8:e57876.
- Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 2008;455:627-32. https://doi.org/10.1038/nature07314
- Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 2010;463:1035-41. https://doi.org/10.1038/nature08797
- Ieda M, Fu JD, Delgado-Olguin P, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 2010;142:375-86. https://doi.org/10.1016/j.cell.2010.07.002
- Szabo E, Rampalli S, Risueno RM, et al. Direct conversion of human fibroblasts to multilineage blood progenitors. Nature 2010;468:521-6. https://doi.org/10.1038/nature09591
- Sekiya S, Suzuki A. Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature 2011;475:390-3. https://doi.org/10.1038/nature10263
- Pang ZP, Yang N, Vierbuchen T, et al. Induction of human neuronal cells by defined transcription factors. Nature 2011;476:220-3. https://doi.org/10.1038/nature10202
- Lee CS, Kim J, Cho HJ, Kim HS. Cardiovascular regeneration via stem cells and direct reprogramming: a review. Korean Circ J 2022;52:341-53. https://doi.org/10.4070/kcj.2022.0005
- Ginsberg M, James D, Ding BS, et al. Efficient direct reprogramming of mature amniotic cells into endothelial cells by ETS factors and TGFβ suppression. Cell 2012;151:559-75. https://doi.org/10.1016/j.cell.2012.09.032
- Margariti A, Winkler B, Karamariti E, et al. Direct reprogramming of fibroblasts into endothelial cells capable of angiogenesis and reendothelialization in tissue-engineered vessels. Proc Natl Acad Sci U S A 2012;109:13793-8. https://doi.org/10.1073/pnas.1205526109
- Kurian L, Sancho-Martinez I, Nivet E, et al. Conversion of human fibroblasts to angioblast-like progenitor cells. Nat Methods 2013;10:77-83. https://doi.org/10.1038/nmeth.2255
- Li J, Huang NF, Zou J, et al. Conversion of human fibroblasts to functional endothelial cells by defined factors. Arterioscler Thromb Vasc Biol 2013;33:1366-75. https://doi.org/10.1161/ATVBAHA.112.301167
- Han JK, Chang SH, Cho HJ, et al. Direct conversion of adult skin fibroblasts to endothelial cells by defined factors. Circulation 2014;130:1168-78. https://doi.org/10.1161/CIRCULATIONAHA.113.007727
- Morita R, Suzuki M, Kasahara H, et al. ETS transcription factor ETV2 directly converts human fibroblasts into functional endothelial cells. Proc Natl Acad Sci U S A 2015;112:160-5. https://doi.org/10.1073/pnas.1413234112
- Wong WT, Cooke JP. Therapeutic transdifferentiation of human fibroblasts into endothelial cells using forced expression of lineage-specific transcription factors. J Tissue Eng 2016;7:2041731416628329.
- Lee S, Park C, Han JW, et al. Direct reprogramming of human dermal fibroblasts into endothelial cells using ER71/ETV2. Circ Res 2017;120:848-61. https://doi.org/10.1161/CIRCRESAHA.116.309833
- Cheng F, Zhang Y, Wang Y, et al. Conversion of human adipose-derived stem cells into functional and expandable endothelial-like cells for cell-based therapies. Stem Cell Res Ther 2018;9:350.
- Chen T, Karamariti E, Hong X, et al. DKK3 (Dikkopf-3) transdifferentiates fibroblasts into functional endothelial cells-brief report. Arterioscler Thromb Vasc Biol 2019;39:765-73. https://doi.org/10.1161/ATVBAHA.118.311919
- Kim JJ, Kim DH, Lee JY, et al. cAMP/EPAC signaling enables ETV2 to induce endothelial cells with high angiogenesis potential. Mol Ther 2020;28:466-78. https://doi.org/10.1016/j.ymthe.2019.11.019
- Bersini S, Schulte R, Huang L, Tsai H, Hetzer MW. Direct reprogramming of human smooth muscle and vascular endothelial cells reveals defects associated with aging and Hutchinson-Gilford progeria syndrome. eLife 2020;9:e54383.
- Han JK, Shin Y, Sohn MH, et al. Direct conversion of adult human fibroblasts into functional endothelial cells using defined factors. Biomaterials 2021;272:120781.
- Rezvani M, Espanol-Suner R, Malato Y, et al. In vivo hepatic reprogramming of myofibroblasts with AAV vectors as a therapeutic strategy for liver fibrosis. Cell Stem Cell 2016;18:809-16. https://doi.org/10.1016/j.stem.2016.05.005
- Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science 2008;322:949-53. https://doi.org/10.1126/science.1164270
- Yu J, Hu K, Smuga-Otto K, et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science 2009;324:797-801. https://doi.org/10.1126/science.1172482
- Cho J, Kim S, Lee H, et al. Regeneration of infarcted mouse hearts by cardiovascular tissue formed via the direct reprogramming of mouse fibroblasts. Nat Biomed Eng 2021;5:880-96. https://doi.org/10.1038/s41551-021-00783-0
- Sayed N, Wong WT, Ospino F, et al. Transdifferentiation of human fibroblasts to endothelial cells: role of innate immunity. Circulation 2015;131:300-9. https://doi.org/10.1161/CIRCULATIONAHA.113.007394
- Li J, Zhu Y, Li N, et al. Upregulation of ETV2 expression promotes endothelial differentiation of human dental pulp stem cells. Cell Transplant 2021;30:963689720978739.
- Pavathuparambil Abdul Manaph N, Al-Hawwas M, Bobrovskaya L, Coates PT, Zhou XF. Urine-derived cells for human cell therapy. Stem Cell Res Ther 2018;9:189.
- Zhou T, Benda C, Dunzinger S, et al. Generation of human induced pluripotent stem cells from urine samples. Nat Protoc 2012;7:2080-9. https://doi.org/10.1038/nprot.2012.115
- Zhang XB. Cellular reprogramming of human peripheral blood cells. Genomics Proteomics Bioinformatics 2013;11:264-74. https://doi.org/10.1016/j.gpb.2013.09.001
- Kim EY, Page P, Dellefave-Castillo LM, McNally EM, Wyatt EJ. Direct reprogramming of urine-derived cells with inducible MyoD for modeling human muscle disease. Skelet Muscle 2016;6:32.
- Tang W, Guo R, Shen SJ, et al. Chemical cocktails enable hepatic reprogramming of human urine-derived cells with a single transcription factor. Acta Pharmacol Sin 2019;40:620-9. https://doi.org/10.1038/s41401-018-0170-z
- Omrani MR, Yaqubi M, Mohammadnia A. Transcription factors in regulatory and protein subnetworks during generation of neural stem cells and neurons from direct reprogramming of non-fibroblastic cell sources. Neuroscience 2018;380:63-77. https://doi.org/10.1016/j.neuroscience.2018.03.033
- Horisawa K, Suzuki A. Direct cell-fate conversion of somatic cells: toward regenerative medicine and industries. Proc Jpn Acad Ser B Phys Biol Sci 2020;96:131-58. https://doi.org/10.2183/pjab.96.012
- Engle SJ, Puppala D. Integrating human pluripotent stem cells into drug development. Cell Stem Cell 2013;12:669-77. https://doi.org/10.1016/j.stem.2013.05.011
- Merkle FT, Eggan K. Modeling human disease with pluripotent stem cells: from genome association to function. Cell Stem Cell 2013;12:656-68. https://doi.org/10.1016/j.stem.2013.05.016
- Gu M, Shao NY, Sa S, et al. Patient-specific iPSC-derived endothelial cells uncover pathways that protect against pulmonary hypertension in BMPR2 mutation carriers. Cell Stem Cell 2017;20:490-504.e5. https://doi.org/10.1016/j.stem.2016.08.019
- Sa S, Gu M, Chappell J, et al. Induced pluripotent stem cell model of pulmonary arterial hypertension reveals novel gene expression and patient specificity. Am J Respir Crit Care Med 2017;195:930-41. https://doi.org/10.1164/rccm.201606-1200OC
- West JD, Austin ED, Gaskill C, et al. Identification of a common Wnt-associated genetic signature across multiple cell types in pulmonary arterial hypertension. Am J Physiol Cell Physiol 2014;307:C415-30. https://doi.org/10.1152/ajpcell.00057.2014
- Theodoris CV, Li M, White MP, et al. Human disease modeling reveals integrated transcriptional and epigenetic mechanisms of NOTCH1 haploinsufficiency. Cell 2015;160:1072-86. https://doi.org/10.1016/j.cell.2015.02.035
- Wu Y, Hu Z, Li Z, et al. In situ genetic correction of F8 intron 22 inversion in hemophilia A patient-specific iPSCs. Sci Rep 2016;6:18865.
- Ang YS, Rivas RN, Ribeiro AJ, et al. Disease model of GATA4 mutation reveals transcription factor cooperativity in human cardiogenesis. Cell 2016;167:1734-1749.e22. https://doi.org/10.1016/j.cell.2016.11.033
- Maherali N, Sridharan R, Xie W, et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 2007;1:55-70. https://doi.org/10.1016/j.stem.2007.05.014
- Studer L, Vera E, Cornacchia D. Programming and reprogramming cellular age in the era of induced pluripotency. Cell Stem Cell 2015;16:591-600. https://doi.org/10.1016/j.stem.2015.05.004
- Hong X, Margariti A, Le Bras A, et al. Transdifferentiated human vascular smooth muscle cells are a new potential cell source for endothelial regeneration. Sci Rep 2017;7:5590.
- Baum C, Dullmann J, Li Z, et al. Side effects of retroviral gene transfer into hematopoietic stem cells. Blood 2003;101:2099-114. https://doi.org/10.1182/blood-2002-07-2314
- Ranzani M, Cesana D, Bartholomae CC, et al. Lentiviral vector-based insertional mutagenesis identifies genes associated with liver cancer. Nat Methods 2013;10:155-61. https://doi.org/10.1038/nmeth.2331
- Li Z, Dullmann J, Schiedlmeier B, et al. Murine leukemia induced by retroviral gene marking. Science 2002;296:497. https://doi.org/10.1126/science.1068893
- Suknuntha K, Tao L, Brok-Volchanskaya V, D'Souza SS, Kumar A, Slukvin I. Optimization of synthetic mRNA for highly efficient translation and its application in the generation of endothelial and hematopoietic cells from human and primate pluripotent stem cells. Stem Cell Rev Rep 2018;14:525-34. https://doi.org/10.1007/s12015-018-9805-1
- Wang K, Lin RZ, Hong X, et al. Robust differentiation of human pluripotent stem cells into endothelial cells via temporal modulation of ETV2 with modified mRNA. Sci Adv 2020;6:eaba7606.
- Cho HJ, Lee N, Lee JY, et al. Role of host tissues for sustained humoral effects after endothelial progenitor cell transplantation into the ischemic heart. J Exp Med 2007;204:3257-69. https://doi.org/10.1084/jem.20070166
- van der Bogt KE, Sheikh AY, Schrepfer S, et al. Comparison of different adult stem cell types for treatment of myocardial ischemia. Circulation 2008;118:S121-9. https://doi.org/10.1161/CIRCULATIONAHA.107.759480
- Vasu S, Zhou J, Chen J, Johnston PV, Kim DH. Biomaterials-based approaches for cardiac regeneration. Korean Circ J 2021;51:943-60. https://doi.org/10.4070/kcj.2021.0291
- Oh JE, Jung C, Yoon YS. Human induced pluripotent stem cell-derived vascular cells: recent progress and future directions. J Cardiovasc Dev Dis 2021;8:148.
- Garlanda C, Dejana E. Heterogeneity of endothelial cells. Specific markers. Arterioscler Thromb Vasc Biol 1997;17:1193-202. https://doi.org/10.1161/01.ATV.17.7.1193
- Paik DT, Tian L, Williams IM, et al. Single-cell RNA sequencing unveils unique transcriptomic signatures of organ-specific endothelial cells. Circulation 2020;142:1848-62. https://doi.org/10.1161/CIRCULATIONAHA.119.041433
- Nolan DJ, Ginsberg M, Israely E, et al. Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Dev Cell 2013;26:204-19. https://doi.org/10.1016/j.devcel.2013.06.017