DOI QR코드

DOI QR Code

A Bicentric Propensity Matched Analysis of 158 Patients Comparing Porcine Versus Bovine Stented Bioprosthetic Valves in Pulmonary Position

  • Bunty Ramchandani (Congenital Cardiovascular Surgery, Hospital Universitario La Paz) ;
  • Raul Sanchez (Congenital Cardiovascular Surgery, Hospital Universitario La Paz) ;
  • Juvenal Rey (Congenital Cardiovascular Surgery, Hospital Universitario La Paz) ;
  • Luz Polo (Congenital Cardiovascular Surgery, Hospital Universitario La Paz) ;
  • Alvaro Gonzalez (Congenital Cardiovascular Surgery, Hospital Universitario La Paz) ;
  • Maria-Jesus Lamas (Congenital Cardiovascular Surgery, Hospital Universitario Ramon y Cajal) ;
  • Tomasa Centella (Congenital Cardiovascular Surgery, Hospital Universitario Ramon y Cajal) ;
  • Jesus Diez (Instituto de Investigacion, Hospital Universitario La Paz) ;
  • Angel Aroca (Congenital Cardiovascular Surgery, Hospital Universitario La Paz)
  • Received : 2021.09.30
  • Accepted : 2022.03.30
  • Published : 2022.08.01

Abstract

Background and Objectives: Pulmonary valve replacement (PVR) is the most common operation in adults with congenital heart disease (CHD). There is controversy regarding the best bioprosthesis. We compare the performance of stented bioprosthetic valves (the Mosaic [MedtronicTM] porcine pericardial against Carpentier Perimount Magna Ease [EdwardsTM] bovine) in pulmonary position in patients with CHD. Methods: Between January 1999 and December 2019, all the PVRs were identified from hospital databases in 2 congenital heart centres in Spain. Valve performance was evaluated using clinical and echocardiographic criteria. Propensity score matching was used to balance the 2 treatment groups. Results: Three hundred nineteen patients were retrospectively identified. After statistical adjustment, 79 propensity-matched pairs were available for comparison Freedom from reintervention for the porcine cohort was 98.3%, 96.1%, and 91.9% at 3, 5, and 10 years and 100%, 98%, and 90.8% for the bovine cohort (p=0.88). Freedom from structural valve degeneration (SVD) for the porcine cohort was 96.9%, 92.8% and 88.7% at 3, 5, and 10 years and 100%, 98%, and 79.1% for the bovine cohort (p=0.38). Bovine prosthesis was associated with a reintervention hazard ratio (HR), 1.12; 95% confidence intervals (CIs), 0.24-5.26; p=0.89 and SVD HR, 1.69 (0.52-5.58); p=0.38. In the first 5 years, there was no difference in outcomes. After 5 years, the recipients of the bovine bioprosthesis were at higher risk for SVD (reintervention HR, 2.08 [0.27-16.0]; p=0.49; SVD HR, 6.99 [1.23-39.8]; p=0.03). Conclusions: Both bioprosthesis have similar outcomes up to 5 years, afterwards, porcine bioprosthesis seem to have less SVD.

Keywords

References

  1. Kogon BE, Rosenblum JM, Mori M. Current readings: issues surrounding pulmonary valve replacement in repaired tetralogy of fallot. Semin Thorac Cardiovasc Surg 2015;27:57-64. https://doi.org/10.1053/j.semtcvs.2015.02.010
  2. Fiore AC, Rodefeld M, Turrentine M, et al. Pulmonary valve replacement: a comparison of three biological valves. Ann Thorac Surg 2008;85:1712-8. https://doi.org/10.1016/j.athoracsur.2008.02.001
  3. Emani SM. Options for prosthetic pulmonary valve replacement. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2012;15:34-7. https://doi.org/10.1053/j.pcsu.2012.01.015
  4. Akins CW, Miller DC, Turina MI, et al. Guidelines for reporting mortality and morbidity after cardiac valve interventions. J Thorac Cardiovasc Surg 2008;135:732-8. https://doi.org/10.1016/j.jtcvs.2007.12.002
  5. Bermudez CA, Dearani JA, Puga FJ, et al. Late results of the peel operation for replacement of failing extracardiac conduits. Ann Thorac Surg 2004;77:881-7. https://doi.org/10.1016/j.athoracsur.2003.08.029
  6. Garrido MM, Kelley AS, Paris J, et al. Methods for constructing and assessing propensity scores. Health Serv Res 2014;49:1701-20.
  7. Austin PC. The use of propensity score methods with survival or time-to-event outcomes: reporting measures of effect similar to those used in randomized experiments. Stat Med 2014;33:1242-58. https://doi.org/10.1002/sim.5984
  8. Koziarz A, Makhdoum A, Butany J, Ouzounian M, Chung J. Modes of bioprosthetic valve failure: a narrative review. Curr Opin Cardiol 2020;35:123-32. https://doi.org/10.1097/HCO.0000000000000711
  9. Kostyunin AE, Yuzhalin AE, Rezvova MA, Ovcharenko EA, Glushkova TV, Kutikhin AG. Degeneration of bioprosthetic heart valves: update 2020. J Am Heart Assoc 2020;9:e018506.
  10. Salaun E, Mahjoub H, Girerd N, et al. Rate, timing, correlates, and outcomes of hemodynamic valve deterioration after bioprosthetic surgical aortic valve replacement. Circulation 2018;138:971-85. https://doi.org/10.1161/CIRCULATIONAHA.118.035150
  11. Barakat A, Mittal A, Ricketts D, Rogers BA. Understanding survival analysis: actuarial life tables and the Kaplan-Meier plot. Br J Hosp Med (Lond) 2019;80:642-6. https://doi.org/10.12968/hmed.2019.80.11.642
  12. Cuerpo Caballero G, Lopez Menendez J, Polo Lopez L, et al. Cirugia cardiovascular en Espana en el ano 2019. Registro de intervenciones de la Sociedad Espanola de Cirugia Cardiovascular y Endovascular. Cirugia Cardiovasc 2021;28:162-76. https://doi.org/10.1016/j.circv.2021.01.004
  13. Raghav V, Okafor I, Quach M, Dang L, Marquez S, Yoganathan AP. Long-term durability of Carpentier-Edwards magna ease valve: a one billion cycle in vitro study. Ann Thorac Surg 2016;101:1759-65. https://doi.org/10.1016/j.athoracsur.2015.10.069
  14. Forcillo J, Pellerin M, Perrault LP, et al. Carpentier-Edwards pericardial valve in the aortic position: 25-years experience. Ann Thorac Surg 2013;96:486-93. https://doi.org/10.1016/j.athoracsur.2013.03.032
  15. Pragt H, van Melle JP, Verkerke GJ, Mariani MA, Ebels T. Pulmonary versus aortic pressure behavior of a bovine pericardial valve. J Thorac Cardiovasc Surg 2020;159:1051-1059.e1. https://doi.org/10.1016/j.jtcvs.2019.05.084
  16. Kwak JG, Bang JH, Cho S, et al. Long-term durability of bioprosthetic valves in pulmonary position: pericardial versus porcine valves. J Thorac Cardiovasc Surg 2020;160:476-84. https://doi.org/10.1016/j.jtcvs.2019.11.134
  17. Pragt H, Schoots MH, Accord RE, et al. A stented bovine pericardial prosthesis in the pulmonary position. J Thorac Cardiovasc Surg 2020;159:1063-1071.e1. https://doi.org/10.1016/j.jtcvs.2019.05.086
  18. Abbas JR, Hoschtitzky JA. Which is the best tissue valve used in the pulmonary position, late after previous repair of tetralogy of fallot? Interact Cardiovasc Thorac Surg 2013;17:854-60. https://doi.org/10.1093/icvts/ivt332
  19. Dorobantu DM, Sharabiani MT, Taliotis D, et al. Age over 35 years is associated with increased mortality after pulmonary valve replacement in repaired tetralogy of Fallot: results from the UK National Congenital Heart Disease Audit database. Eur J Cardiothorac Surg 2020;58:825-31. https://doi.org/10.1093/ejcts/ezaa069
  20. Aroca A, Polo L, Perez-Farinos N, et al. ¿Funcionan igual las protesis pulmonares porcinas en menores de edad que en adultos? Una llamada a la prudencia. Cirugia Cardiovasc 2017;24:135-41. https://doi.org/10.1016/j.circv.2016.10.008
  21. Marathe SP, Bell D, Betts K, et al. Homografts versus stentless bioprosthetic valves in the pulmonary position: a multicentre propensity-matched comparison in patients younger than 20 years. Eur J Cardiothorac Surg 2019;2019:1-8. https://doi.org/10.1093/ejcts/ezz021
  22. Tatewaki H, Shiose A. Pulmonary valve replacement after repaired tetralogy of fallot. Gen Thorac Cardiovasc Surg 2018;66:509-15. https://doi.org/10.1007/s11748-018-0931-0
  23. Nomoto R, Sleeper LA, Borisuk MJ, et al. Outcome and performance of bioprosthetic pulmonary valve replacement in patients with congenital heart disease. J Thorac Cardiovasc Surg 2016;152:1333-1342.e3. https://doi.org/10.1016/j.jtcvs.2016.06.064
  24. Bortolotti U, Milano AD, Valente M, Thiene G. The stented porcine bioprosthesis: a 50-year journey through hopes and realities. Ann Thorac Surg 2019;108:304-8. https://doi.org/10.1016/j.athoracsur.2019.03.015