DOI QR코드

DOI QR Code

Effect of PVDF Nanofiber with a β-Type Crystal Structure on Filtration Performance

β형 결정구조를 갖는 PVDF 나노섬유가 필터의 여과 성능에 미치는 영향

  • Received : 2022.06.15
  • Accepted : 2022.08.25
  • Published : 2022.08.31

Abstract

Currently, the most important PVDF polymorph is the β-phase, which has a net crystalline dipole moment oriented precisely normal to the molecular chain. This dipole moment is responsible for the enhancement in piezoelectric and ferroelectric activities. Nanofibers prepared by electrospinning are a desirable material for air filtration applications owing to their high porosity, micro-nano channel interconnects, and high surface-area-to-volume ratio. Electrospinning nanofibers have a high surface-area-to-volume ratio, an adjustable porous structure, and a facile preparation process, making them a suitable candidate for filtration materials. Previous studies have reported structural variation in electrospun PVDF nanofibers in the presence of BaO3Ti via the formation of β-type increment crystallites. In this study, two nanofiber samples prepared by the electrospinning of PVDF and PVDF/BaO3Ti solutions were used to investigate the air filter efficiency and pressure drop and understand the effect of the crystal structure change of PVDF nanofibers on the filtration performance. For nanofibers prepared by electrospinning a solution containing a mixture of BaO3Ti and PVDF, the β-type crystal structure transition and dielectric constant improved. The results indicated that the realization of high-performance filter materials with a low pressure drop at the same high filter efficiency is possible.

Keywords

Acknowledgement

본 연구는 중소벤처기업부의 2020년도 중소기업기술혁신개발사업(분진포집효율 85% 이상, 공기투과도 400 cm3/cm2/s 이상의 성능을 갖는 창문형 필터 개발)으로 수행되었습니다.

References

  1. J. W. Lee and J. Y. Kim, "Material Propeties Influencing the Charge Decay of Electret Filters and their Impact on Filtration Performance", Polymers, 2020, 12, 1-14.
  2. X. Wang, K. Kim, C. Lee, and J. Kim, "Prediction of Air Filter Efficiency and Pressure Drop in Air Filtration Media Using a Stochastic Simulation", Fiber. Polym., 2008, 9, 34-38. https://doi.org/10.1007/s12221-008-0006-4
  3. A. Patanaika, V. Jacobs, and R. D. Anandjiwala, "Performance Evaluation of Electrospun Nanofibrous Membrane", J. Membr. Sci., 2010, 352, 136-142. https://doi.org/10.1016/j.memsci.2010.02.009
  4. Q. Zhang, J. Welch, H. J. Park, C. Y. Wu, W. Sigmund, and J. C. M. Marijnissen, "Improvement in Nanofiber Filtration by Multiple Thin Layers of Nanofiber Mats", J. Aerosol Sci., 2010, 41, 230-236. https://doi.org/10.1016/j.jaerosci.2009.10.001
  5. X. H. Qin and S. Y. Wang, "Filtration Properties of Electrospinning Nanofibers", J. Appl. Polym. Sci., 2006, 102, 1285-1290. https://doi.org/10.1002/app.24361
  6. D. R. Dillon, K. K. Tenneti, C. Y. Li, F. K. Ko, I. Sics, and B. S. Hsiao, "On the Structure and Morphology of Polyvinylidene Fluoride-nanoclay Nanocomposites", Polymer, 2006, 47, 1678-1688. https://doi.org/10.1016/j.polymer.2006.01.015
  7. L. Priya and J. P. Jog, "Poly(vinylidene fluoride)/clay Nanocomposites Prepared by Melt Intercalation: Crystallization and Dynamic Mechanical Behavior Studies", J. Polym. Sci. Polym. Phys., 2002, 40, 1682-1689. https://doi.org/10.1002/polb.10223
  8. C. K. Park, J. S. Yun, J. H. Cho, J. H. Paik, Y. H. Jeong, and D. Y. Jeong, "Optimization of Electrospinning Conditions for PZT/PVDF Nanofibers", J. Korean Ceramic Soc., 2014, 51, 523-526. https://doi.org/10.4191/kcers.2014.51.6.523
  9. M. Hossain and A. Kim, "The Effect of Acetic Acid on Morphology of PZT Nanofibers Fabricated by Electrospinning", Mater. Lett., 2009, 63, 789-792. https://doi.org/10.1016/j.matlet.2009.01.005
  10. E. S. Cozza, O. Monticelli, E. Marsano, and P. Cebe, "On the Electrospinning of PVDF: Influence of the Experimental Conditions on the Nanofiber Properties", Polym. Int., 2013, 62, 41-48. https://doi.org/10.1002/pi.4314
  11. A. J. Lovinger in "Developments in Crystalline Polymers" (D. C. Bassett Ed.), 1982, pp.195-258.
  12. M. Kobayashi, K. Tashiro, and H. Tadokoro, "Molecular Vibrations of Three Crystal forms of Poly (vinylidene fluoride)", Macromolecules, 1975, 8, 158-171. https://doi.org/10.1021/ma60044a013
  13. N. Levi, R. Czerw, S. Xing, P. Iyer and D. L. Carroll, "Properties of Polyvinylidene Difluoride-Carbon Nanotube Blends", Nano Letts, 2004, 4, 1267-1271. https://doi.org/10.1021/nl0494203
  14. K. S. Hwang, M. Y. Kim, B. Son, S. Hwang-Bo, and H. No, "Effect of Nickel Nitrate Doping on β-type PVDF Layers Prepared by Electrostatic Spray Deposition", The Trans. of the Korean Inst. Elect. Eng., 2018, 67, 1317-1321.
  15. J. Buckley, P. Cebe, D. Cherdack, J. Crawford, B. S. Ince, and M. Jenkins, "Nanocomposites of Poly(vinylidene fluoride) with Organically Modified Silicate", Polymer, 2006, 47, 2411-2422. https://doi.org/10.1016/j.polymer.2006.02.012
  16. L. Priya and J. P. Jog, "Intercalated Poly(vinylidene fluoride)/ clay Nanocomposites: Structure and Properties", J. Polym. Sci. Polym. Phys., 2003, 41, 31-38. https://doi.org/10.1002/polb.10355
  17. S. W. Lee and N. C. Jung, "Fabrication of CNT/PVDF Composite Film and Its Electrical Properties", J. KIEEME, 2013, 26, 620-623.
  18. S. Y. Oh and E. H. Kim, "Effect of Metal Oxides on the Preparation of PVDF Nanofibers with β-type Crystal Structure Using Electrospinning", Text. Sci. Eng., 2021, 58, 99-105.
  19. A. J. Paleo, C. M. Boubeta, L. Balcells, C. M. Costa, V. Sencadas, and S. L. Mendez, "Thermal, Dielectrical and Mechanical Response of α and β-poly(vinilydene fluoride)/ Co-MgO Nanocomposites", Nanoscale Res. Lett., 2011, 6, 257. https://doi.org/10.1186/1556-276X-6-257
  20. A. N. Arshad, M. H. M. Wahid, M. Rusop, W. H. A. Majid, R. H. Y. Subban, and M. D. Rozana,"Dielectric and Structural Properties of Poly(vinylidene fluoride)(PVDF) and Poly (vinylidene fluoride-trifluoroethylene)(PVDF-TrFE) Filled with Magnesium Oxide Nanofillers", J. Nanomater., 2019, 2019, 5961563.
  21. J. W. Lee and J. Y. Kim, "Materials Properties Influencing the Charge Decay of Electret Filters and their Impact on Filtration Performance", Polymers, 2020, 12, 721. https://doi.org/10.3390/polym12030721
  22. G. Multhaupt and R. Electrets, "Dielectrics with Quasi- Permanent Charge or Polarization", IEEE Trans. Electr. Insul., 1987, 5, 531-554. https://doi.org/10.1109/TEI.1987.299007
  23. G. Collins, J, Federici, Y. Imura, and L. H. Catalani, "Charge Generation, Charge Transport, and Residual Charge in the Electrospinning of Polymers: A Review of Issues and Complications", J. Appl. Phys., 2012, 111, 044701. https://doi.org/10.1063/1.3682464
  24. Z. Li, Z. Zhong, and B. Du, "Dielectric Relaxation and Trapmodulated DC Breakdown of Polypropylene Blend Insulation", Polymer, 2019, 185, 121935. https://doi.org/10.1016/j.polymer.2019.121935
  25. Y. C. Ahn, G. T. Kim, S. K. Kim, J. K. Lee, and J. W. Ki, "Characteristic Analysis of Electret Filters Made by Electrospinning", Proceedings of the SAREK Conference, 2008, pp.1134-1138.
  26. B. M. Cho, Y. S. Nam, J. Y. Cheon, and W. H. Park, "Residual Charge and Filtration Efficiency of Polycarbonate Fibrous Membranes Prepared by Electrospinning", J. Appl. Polym. Sci., 2015, 132, 41430.