# SOME FIXED POINT THEOREMS FOR GENERALIZED KANNAN TYPE MAPPINGS IN RECTANGULAR b-METRIC SPACES 

Mohamed Rossafi ${ }^{1}$ and Hafida Massit ${ }^{2}$<br>${ }^{1}$ LaSMA Laboratory Department of Mathematics, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, P. O. Box 1796 Fez Atlas, Morocco e-mail: rossafimohamed@gmail.com; mohamed.rossafi@usmba.ac.ma<br>${ }^{2}$ Laboratory of Partial Differential Equations, Spectral Algebra and Geometry, Department of Mathematics, Faculty of Sciences, University of Ibn Tofail, P. O. Box 133 Kenitra, Morocco<br>e-mail: massithafida@yahoo.fr


#### Abstract

This present paper extends some fixed point theorems in rectangular $b$-metric spaces using subadditive altering distance and establishing the existence and uniqueness of fixed point for Kannan type mappings. Non-trivial examples are further provided to support the hypotheses of our results.


## 1. Introduction

In 1968, Kannan proved that a contractive mapping with a fixed point need not be necessarily continuous and presented the following fixed point result.

Theorem 1.1. ([13]) Let $(X, d)$ be a complete metric space and $T: X \rightarrow X$ be a mapping such that there exists $0<k<\frac{1}{2}$ satisfying

$$
d(T x, T y) \leq k[d(x, T x)+d(y, T y)], \quad \forall x, y \in X .
$$

[^0]Then, $T$ has a unique fixed point $u \in X$, and for any $x \in X$ the sequence of iterates $\left\{T^{n} x\right\}$ converges to $u$ and

$$
d\left(T^{n+1} x, u\right) \leq k\left(\frac{k}{1-k}\right)^{n} d(x, T x), \quad n=0,1,2, \cdots
$$

The concept of metric space, as an ambient space in fixed point theory, has been generalized in several directions. In particular, $b$-metric spaces were introduced by Bakhtin [1] and Czerwik [2], in such a way that triangle inequality is replaced by the $b$-triangle inequality:

$$
d(x, y) \leq b(d(x, z)+d(z, y))
$$

for all pairwise distinct points $x, y, z$ and $b \geq 1$. Various fixed point results were established on such spaces, see $[3,4,5,10,11,14,15,17,18,19,20]$.

In this paper, we provide some fixed point results for generalized Kannan type mapping in rectangular $b$-metric spaces. Moreover, an illustrative examples is presented to support the obtained results.

## 2. Preliminaries

Combining conditions used to define $b$-metric and rectangular metric spaces, George et al. [9] announced the notions of $b$-rectangular metric space as follow:
Definition 2.1. ([9]) Let $X$ be a nonempty set, $b \geq 1$ be a given real number, and let $d: X \times X \rightarrow[0,+\infty[$ be a mapping such that for all $x, y \in X$ and all distinct points $u, v \in X$, each distinct from $x$ and $y$ :
(1) $d(x, y)=0$, if only if $x=y$;
(2) $d(x, y)=d(y, x)$;
(3) $d(x, y) \leq b[d(x, u)+d(u, v)+d(v, y)]$ ( $b$-rectangular inequality).

Then $(X, d)$ is called a $b$-rectangular metric space.
Example 2.2. Let $X=\mathbb{R}$. Define $d(x, y)=|x-y|$ where $x, y \in \mathbb{R}$. It is easy to verify that $d$ is a rectangular $b$-metric and $(X, \mathbb{R}, d)$ is a complete rectangular $b$-metric space.

We try to extend the result of Kannan using the following class of subadditive altering distance functions.
Definition 2.3. ([12]) A function $\varphi:[0, \infty) \rightarrow[0, \infty)$ is said to be a subadditive altering distance function if
(1) $\varphi$ is an altering distance function (that is, $\varphi$ is continuous, strictly increasing and $\varphi(t)=0$ if and only if $t=0$ ),
(2) $\varphi(x+y) \leq \varphi(x)+\varphi(y), \forall x, y \in[0, \infty)$.

Example 2.4. The functions $\varphi_{1}(x)=\sqrt{x}, \varphi_{2}(x)=3 x$ and $\varphi_{3}(x)=\log (1+x)$ are subadditive altering distance functions.

We note that, if $\varphi$ is subadditive, then for any non negative real number $k<1, \varphi(d(x, y)) \leq k \varphi(d(a, b))$ implies $d(x, y) \leq k^{\prime} d(a, b)$ for some $k^{\prime}<1$.

## 3. Main result

Consider $\varphi$ as a subadditive altering distance function and the $b$-metric $d$ is assumed to be continuous in the topology generated by it, we give some new fixed point results.

Theorem 3.1. Let $(X, d)$ be a complete rectangular $b$-metric space with coefficient $b \geq 1$ and $T: X \rightarrow X$ be a mapping such that there exists $p<\frac{1}{2 b+1}$ satisfying:

$$
\begin{equation*}
\varphi(d(T x, T y)) \leq p[\varphi(d(x, y))+\varphi(d(x, T x))+\varphi(d(y, T y))], \forall x, y \in X \tag{3.1}
\end{equation*}
$$

Then, $T$ has a unique fixed point $u \in X$, the sequence $\left\{T^{n} x\right\}$ converges to $u$ and for $q=\frac{2 p}{1-p}<1$ we have

$$
d\left(T^{n+1} x, T^{n} x\right) \leq q^{n} d(x, T x), n=0,1,2,3, \cdots .
$$

Proof. Let $z=T x$ for an arbitrary element $x \in X$. Then

$$
\begin{aligned}
\varphi(d(z, T z)) & =\varphi(d(T x, T z)) \\
& \leq p[\varphi(d(x, z))+\varphi(d(x, T x))+\varphi(d(z, T z))
\end{aligned}
$$

Hence we have

$$
\varphi(d(z, T z)) \leq q \varphi(d(x, T x)),
$$

where $q=\frac{2 p}{1-p}<1$, it implies that

$$
\begin{equation*}
d(z, T z) \leq q^{\prime} d(x, T x) \tag{3.2}
\end{equation*}
$$

for $q^{\prime}<1$.
Without loss of generality, we assume $q=q^{\prime}$. Let $x_{0} \in X$, consider the sequence $\left\{x_{n}\right\} \subset X$ such that $x_{n+1}=T x_{n}$ for all $n \in \mathbb{N}$. If there exists $n \in \mathbb{N}$ such that $x_{n}=T x_{n}$. Then $x_{n}$ is a fixed point of $T$ and the proof is finished. Hence, we assume that $x_{n} \neq T x_{n}$ for all $n \in \mathbb{N}$. Then for $m \geq 1$ and $r \geq 1$, it
follows that

$$
\begin{aligned}
& d\left(x_{m+r}, x_{m}\right) \\
& \leq b\left[d\left(x_{m+r}, x_{m+r-1}\right)+d\left(x_{m+r-1}, x_{m+r-2}\right)+d\left(x_{m+r-2}, x_{m}\right)\right] \\
& \leq b d\left(x_{m+r}, x_{m+r-1}\right)+b d\left(x_{m+r-1}, x_{m+r-2}\right) \\
&+b\left[b\left[d\left(x_{m+r-2}, x_{m+r-3}\right)+d\left(x_{m+r-3}, x_{m+r-4}\right)+d\left(x_{m+r-4}, x_{m}\right)\right]\right] \\
&= b d\left(x_{m+r}, x_{m+r-1}\right)+b d\left(x_{m+r-1}, x_{m+r-2}\right)+b^{2} d\left(x_{m+r-2}, x_{m+r-3}\right) \\
&+b^{2} d\left(x_{m+r-3}, x_{m+r-4}\right)+b^{2} d\left(x_{m+r-4}, x_{m}\right) \\
& \leq b d\left(x_{m+r}, x_{m+r-1}\right)+b d\left(x_{m+r-1}, x_{m+r-2}\right)+b^{2} d\left(x_{m+r-2}, x_{m+r-3}\right) \\
&+b^{2} d\left(x_{m+r-3}, x_{m+r-4}\right)+\cdots+b^{\frac{r-1}{2}} d\left(x_{m+3}, x_{m+2}\right) \\
&+b^{\frac{r-1}{2}} d\left(x_{m+2}, x_{m+1}\right)+b^{\frac{r-1}{2}} d\left(x_{m+1}, x_{m}\right) \\
& \leq d\left(x_{1}, x_{0}\right)\left(b q^{m+r-1}+b^{2} q^{m+r-3}+\cdots+b^{\frac{r-1}{2}} q^{m+2}+b q^{m+r-2}\right. \\
&\left.+b^{2} q^{m+r-4}+\cdots+b^{\frac{r-1}{2}} q^{m+1}+b^{\frac{r-1}{2}} q^{m}\right) \\
& \frac{r-1}{2} \\
&= \sum_{k=1}^{\frac{r-1}{2}} b^{k} q^{m+r-(2 k-1)} d\left(x_{1}, x_{0}\right)+\sum_{k=1}^{k} b^{m+r-2 k} d\left(x_{1}, x_{0}\right)+b^{\frac{r-1}{2}} q^{m} d\left(x_{1}, x_{0}\right) \\
& \rightarrow 0 \text { as } m \rightarrow \infty .
\end{aligned}
$$

Therefore, $\left\{x_{n}\right\}$ is a Cauchy sequence in $X$. By completeness of $X$, there exists an $x \in X$ such that

$$
\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} T x_{n-1}=x .
$$

Since

$$
\begin{aligned}
& d(T x, x) \leq b\left[d\left(T x, T x_{n}\right)+d\left(T x_{n}, T x_{n+1}\right)+d\left(T x_{n+1}, x\right)\right], \\
& \varphi(d(T x, x)) \leq b p\left[\varphi\left(d\left(x, x_{n}\right)\right)+\varphi(d(x, T x))+\varphi\left(x_{n}, x_{n+1}\right)+\varphi\left(d\left(x_{n}, x_{n+1}\right)\right.\right. \\
&\left.+\varphi\left(d\left(x_{n}, x_{n+1}\right)\right)+\varphi\left(d\left(x_{n+1}, x_{n+2}\right)\right)\right]+b \varphi\left(d\left(T x_{n+1}, x\right)\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
&(1-b p) \varphi(d(T x, x)) \leq b p\left[\varphi\left(d\left(x, x_{n}\right)\right)+\varphi\left(x_{n}, x_{n+1}\right)+\varphi\left(d\left(x_{n}, x_{n+1}\right)\right.\right. \\
&\left.+\varphi\left(d\left(x_{n}, x_{n+1}\right)\right)+\varphi\left(d\left(x_{n+1}, x_{n+2}\right)\right)\right]+b \varphi\left(d\left(T x_{n+1}, x\right)\right) \\
& \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

This implies that $T x=x$, it means that that $x$ is a fixed point of $T$.
Now if $y(\neq x)$ is an another fixed point of $T$, then

$$
\varphi(d(x, y)) \leq p[\varphi(d(x, y))+\varphi(d(x, T x))+\varphi(d(y, T y))],
$$

it implies that

$$
\varphi(d(x, y)) \leq p \varphi(d(x, y))
$$

Since $\varphi$ is strictly increasing and $p<\frac{1}{2 b+1}, d(x, y)=0$, therefore the fixed point of $T$ is unique. From (3.2) we have

$$
d\left(T^{n+1} x, T^{n} x\right) \leq q d\left(T^{n-1} x, T^{n} x\right)
$$

where $q=\frac{2 p}{1-p}<1$, that is,

$$
d\left(T^{n+1} x, T^{n} x\right) \leq q^{n} d(x, T x)
$$

for all $n=0,1,2, \cdots$. This completes the proof.
Example 3.2. Let $X=\mathbb{R}$ and $(X, d)$ the complete rectangular $b$-metric space as given in Example 2.2.

Define $T: X \rightarrow X$, by $T x=\frac{x}{3}$ for all $x \in X$ and $\varphi(t)=2 t$, we have

$$
\varphi(d(T x, T y))<\frac{1}{6}(\varphi(d(x, y))+\varphi(d(x, T x))+\varphi(d(y, T y))), \quad \forall x, y \in X
$$

Then $T$ is a continuous map satisfying (3.1) and 0 is a unique fixed point of $T$ and the sequence $\left\{T^{n} x\right\}=\left\{\frac{x}{3^{n}}\right\}$ for any point $x \in X$ converges to 0 .

Corollary 3.3. Let $(X, d)$ be a complete rectangular $b$-metric space and let $T: X \rightarrow X$ be a mapping such that

$$
d(T x, T y) \leq p[d(x, y)+d(x, T x)+d(y, T y))], \quad \forall x, y \in X
$$

where $p<\frac{1}{2 b+1}$. Then, $T$ has a fixed point in $X$.
Proof. From Theorem 3.1 if we take $\varphi(x)=x$, we obtain the result.
Theorem 3.4. Let $(X, d)$ be a complete rectangular $b$-metric space with coefficient $b \geq 1$ and $T: X \rightarrow X$ be a mapping such that there exists $p_{1}, p_{2}, p_{3}$ with $p_{1}+p_{2}+p_{3}<1$ and $b p_{2}<1$ satisfying

$$
\begin{equation*}
\varphi(d(T x, T y)) \leq p_{1} \varphi(d(x, y))+p_{2} \varphi(d(x, T x))+p_{3} \varphi(d(y, T y)), \forall x, y \in X \tag{3.3}
\end{equation*}
$$

Then $T$ has a unique fixed point $u \in X$, and for any $x \in X$ the sequence of iterates $\left\{T^{n} x\right\}$ converges to $u$ and for $q=\frac{p_{1}+p_{2}}{1-p_{3}}$,

$$
d\left(T^{n+1} x, T^{n} x\right) \leq q^{n} d(x, T x), n=0,1,2, \cdots
$$

Proof. Similary to the proof of Theorem 3.1 if we consider a metric space $(X, d)$ and $\varphi(x)=x$.

Example 3.5. Let $X=[0,1]$ and $d: X \times X \rightarrow[0, \infty[$ defined as $d(x, y)=$ $|x-y|^{2}$ is a rectangular $b$-metric and $T: X \rightarrow X$ defined by $T x=\frac{x}{2}$; if $x \in\left[0,1\left[\right.\right.$ and $T 1=\frac{1}{3}$. If we put $p_{1}=\frac{1}{2}, p_{2}=\frac{1}{3}$ and $p_{3}=\frac{1}{9}$ and $\varphi(x)=x$, we obtain that $T$ satisfies (3.3) then $T$ has a unique fixed point.

We can easily prove the following two theorems.
Theorem 3.6. Let $(X, d)$ be a rectangular $b$-metric space with coefficient $b \geq$ 1, if every mapping $T: X \rightarrow X$ satisfying

$$
\varphi(d(T x, T y)) \leq p[\varphi(d(x, y))+\varphi(d(x, T x))+\varphi(d(y, T y))], \quad \forall x, y \in X
$$

for some $0 \leq p<\frac{1}{2 b+1}$, then $X$ is complete.
Theorem 3.7. Let $(X, d)$ be a complete rectangular $b$-metric space with coefficient $b \geq 1$, and $T: X \rightarrow X$ be a mapping such that there exists $0 \leq p<\frac{1}{2 b+1}$ satisfying

$$
\varphi(d(T x, T y)) \leq p(\varphi(d(x, T x))+\varphi(d(y, T y))), \quad \forall x, y \in X
$$

Then $T$ has a unique fixed point $u \in X$ and the sequence $\left\{T^{n} x\right\}$ converges to $u$.

By the proof of Theorem 3.1, we get the following result which is the Kannan theorem as a consequence.

Theorem 3.8. Let $(X, d)$ be a complete rectangular $b$-metric space with coefficient $b \geq 1$, and $T: X \rightarrow X$ be a mapping such that there exists $p<\frac{1}{2 b}$ satisfying

$$
\begin{equation*}
\varphi(d(T x, T y)) \leq p(\varphi(d(x, T x))+\varphi(d(y, T y))), \quad \forall x, y \in X \tag{3.4}
\end{equation*}
$$

Then $T$ has a unique fixed point $u \in X$, and for all $x \in X$ the sequence $\left\{T^{n} x\right\}$ converges to $u$ and for $q=\frac{p}{1-p}<1$,

$$
d\left(T^{n+1} x, u\right) \leq q^{n} d(x, T x), n=0,1,2, \cdots
$$

Proof. Let $x_{0}$ be an arbitrary point of $X$. Consider the iterative sequence $\left\{x_{n}\right\}$, where $x_{n}=T x_{n-1}$ for $n \in \mathbb{N}$. Then we have

$$
\begin{aligned}
\varphi\left(d\left(x_{n}, x_{n+1}\right)\right) & =\varphi\left(d\left(T x_{n-1}, T x_{n}\right)\right) \\
& \leq p\left[\varphi\left(d\left(x_{n-1}, T x_{n-1}\right)\right)+\varphi\left(d\left(x_{n}, T x_{n}\right)\right)\right] \\
& \leq p\left[\varphi\left(d\left(x_{n-1}, x_{n}\right)\right)+\varphi\left(d\left(x_{n}, x_{n+1}\right)\right)\right] .
\end{aligned}
$$

Hence, we get

$$
(1-p) \varphi\left(d\left(x_{n}, x_{n+1}\right)\right) \leq p \varphi\left(d\left(x_{n-1}, x_{n}\right)\right)
$$

that is,

$$
\varphi\left(d\left(x_{n}, x_{n+1}\right)\right) \leq \frac{p}{1-p} \varphi\left(d\left(x_{n-1}, x_{n}\right)\right) .
$$

From (3.2), we get

$$
\begin{aligned}
d\left(x_{n}, x_{n+1}\right) & \leq \frac{p}{1-p} d\left(x_{n-1}, x_{n}\right)=q d\left(x_{n-1}, x_{n}\right) \\
& \leq q^{n} d\left(x_{0}, x_{1}\right) \\
& \rightarrow 0 \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

For $m \geq 1$ and $r \geq 1$, it follows that

$$
\begin{aligned}
& d\left(x_{m+r}, x_{m}\right) \\
& \leq b\left[d\left(x_{m+r}, x_{m+r-1}\right)+d\left(x_{m+r-1}, x_{m+r-2}\right)+d\left(x_{m+r-2}, x_{m}\right)\right] \\
& \leq b d\left(x_{m+r}, x_{m+r-1}\right)+b d\left(x_{m+r-1}, x_{m+r-2}\right) \\
&+b\left[b\left[d\left(x_{m+r-2}, x_{m+r-3}\right)+d\left(x_{m+r-3}, x_{m+r-4}\right)+d\left(x_{m+r-4}, x_{m}\right)\right]\right] \\
&= b d\left(x_{m+r}, x_{m+r-1}\right)+b d\left(x_{m+r-1}, x_{m+r-2}\right)+b^{2} d\left(x_{m+r-2}, x_{m+r-3}\right) \\
&+b^{2} d\left(x_{m+r-3}, x_{m+r-4}\right)+b^{2} d\left(x_{m+r-4}, x_{m}\right) \\
& \leq b d\left(x_{m+r}, x_{m+r-1}\right)+b d\left(x_{m+r-1}, x_{m+r-2}\right)+b^{2} d\left(x_{m+r-2}, x_{m+r-3}\right) \\
&+b^{2} d\left(x_{m+r-3}, x_{m+r-4}\right)+\ldots+b^{\frac{r-1}{2}} d\left(x_{m+3}, x_{m+2}\right) \\
&+b^{\frac{r-1}{2}} d\left(x_{m+2}, x_{m+1}\right)+b^{\frac{r-1}{2}} d\left(x_{m+1}, x_{m}\right) \\
& \leq d\left(x_{1}, x_{0}\right)\left(b q^{m+r-1}+b^{2} q^{m+r-3}+\ldots+b^{\frac{r-1}{2}} q^{m+2}\right. \\
&+b q^{m+r-2}+b^{2} q^{m+r-4}+\ldots+b^{\frac{r-1}{2}} q^{m+1}+b^{\frac{r-1}{2}} q^{m} \\
& \frac{r-1}{2} \\
&= \sum_{k=1}^{\frac{r-1}{2}} b^{k} q^{m+r-(2 k-1)} d\left(x_{1}, x_{0}\right)+\sum_{k=1}^{b^{k}} q^{m+r-2 k} d\left(x_{1}, x_{0}\right)+b^{\frac{r-1}{2}} q^{m} d\left(x_{1}, x_{0}\right) \\
& \rightarrow 0 \text { as } m \rightarrow \infty .
\end{aligned}
$$

Therefore $\left\{x_{n}\right\}$ is a Cauchy sequence in $X$. By completeness of $X$, there exists an $x \in X$ such that

$$
\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} T x_{n-1}=x .
$$

From

$$
d(T x, x) \leq b\left[d\left(T x, T x_{n}\right)+d\left(T x_{n}, x_{n}\right)+d\left(x_{n}, x\right)\right],
$$

we have

$$
\begin{aligned}
\varphi(d(T x, x)) \leq & b p\left[\varphi\left(d\left(T x, T x_{n}\right)\right)+\varphi\left(T x_{n}, x_{n}\right)+\varphi\left(d\left(x_{n}, x\right)\right) .\right. \\
\leq & b p\left[\varphi(d(x, T x))+\varphi\left(d\left(x_{n}, T x_{n}\right)\right)\right] \\
& +b \varphi\left(d\left(T x_{n}, x_{n}\right)\right)+b \varphi\left(d\left(x_{n}, x\right)\right) .
\end{aligned}
$$

Hence, we have

$$
\begin{aligned}
(1-b p) \varphi(d(T x, x)) & \leq b(p+1) \varphi\left(d\left(T x_{n}, x_{n}\right)\right)+b \varphi\left(d\left(x_{n}, x\right)\right) \\
& \rightarrow 0 \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

This implies that $T x=x$, it means that $x$ is a fixed point of $T$.
Now, if $y(\neq x)$ is an another fixed point of $T$, then

$$
\varphi(d(x, y)) \leq p[\varphi(d(x, T x))+\varphi(d(y, T y))] .
$$

Hence,

$$
\varphi(d(x, y)) \leq p(\varphi(d(x, x))+\varphi(d(y, y)))=0,
$$

then $d(x, y)=0$. Therefore, the fixed point of $T$ is unique. From (3.2), we have

$$
d\left(T^{n+1} x, T^{n} x\right) \leq q d\left(T^{n-1} x, T^{n} x\right)
$$

where $q=\frac{p}{1-p}<1$, that is,

$$
d\left(T^{n+1} x, T^{n} x\right) \leq q^{n} d(x, T x)
$$

for all $n=0,1,2, \cdots$.
Example 3.9. Consider the complete rectangular $b$-metric space $(X, d)$, where $X=\mathbb{R}$ and $d(x, y)=|x-y|$ for all $x, y \in X$. Define the mapping $T: X \rightarrow X$ by

$$
T(x)= \begin{cases}0, & \text { if } x \leq 1 \\ -\frac{1}{3}, & \text { if } x>1\end{cases}
$$

Then $T$ is not continous at 1 . For $\varphi(x)=3 x$, we have

$$
3 d(T x, T y) \leq 3 p(d(x, T x)+d(y, T y))
$$

For $x \leq 1$ and $y \leq 1$,

$$
\begin{aligned}
d(T x, T y) & =0 \leq p[d(x, T x)+d(y, T y)] \\
& =p[|x|+|y|]
\end{aligned}
$$

and

$$
\varphi(d(T x, T y)) \leq p[\varphi(|x|)+\varphi(|y|)] .
$$

For $x>1$ and $y>1$,

$$
\begin{aligned}
d(T x, T y) & =0 \leq p[d(x, T x)+d(y, T y)] \\
& =p\left[\left|x+\frac{1}{3}\right|+\left|y+\frac{1}{3}\right|\right],
\end{aligned}
$$

$$
0 \leq p\left(x+y+\frac{2}{3}\right)
$$

and

$$
\varphi(d(T x, T y)) \leq 3 p\left(x+y+\frac{2}{3}\right)
$$

Thus, $T$ satisfies (3.4). Therefore, $T$ has a unique fixed point $x=0$.

Theorem 3.10. Let $(X, d)$ be a rectangular b-metric space with coefficient $b \geq 1$, if every mapping $T: X \rightarrow X$ satisfying

$$
\varphi(d(T x, T y)) \leq p(\varphi(d(x, T x))+\varphi(d(y, T y))), \quad \forall x, y \in X
$$

for some $p<\frac{1}{2 b}$, has a unique fixed point, then $X$ is complete.
In 1975 , Subrahmanyam [21] proved that a metric space $(X, d)$ is complete if and only if every Kannan mapping has a unique fixed point in $X$. Later on, Fisher [7] and Khan [16] proved two important fixed point results related to contractive type mappings on compact metric spaces. They proved that a continuous mapping on a compact metric space $(X, d)$ has a unique fixed point if $T$ satisfies

$$
d(T x, T y)<\frac{1}{2}(d(x, T y)+d(y, T x))
$$

or

$$
d(T x, T y)<(d(x, T x) d(y, T y))^{\frac{1}{2}}
$$

for all $x, y \in X$ with $x \neq y$ respectively.
Since sequentially compact rectangular $b$-metric spaces are complete, the completeness condition in Theorem 3.8 may be replaced by sequential compactness.

A bounded compact metric space [6] is a metric space $X$ in which every bounded sequence in $X$ has a convergent subsequence. The same notion may be defined in the case of rectangular $b$-metric spaces. The class of bounded compact rectangular $b$-metric spaces is larger than that of sequentially compact spaces as the rectangular $b$-metric space $\mathbb{R}$ of real numbers with the usual metric is not sequentially compact but bounded compact. In the next result, $p$ is independent of the coefficient $b$ of the rectangular $b$-metric space.

Theorem 3.11. Let $(X, d)$ be a bounded compact rectangular b-metric space and $T: X \rightarrow X$ be a continuous mapping satisfying (3.4) for some $0 \leq p<\frac{1}{2}$. Then $T$ has a unique fixed point $u \in X$ and for every $x_{0} \in X$, the sequence $\left\{T^{n} x_{0}\right\}$ converges to $u$.

Proof. Let $x_{0} \in X$ be an arbitrary point. Consider a sequence $\left\{x_{n}\right\}$, where $x_{n}=T^{n} x_{0}$ for all $n \in \mathbb{N}$. Then by (3.4) we have

$$
\begin{aligned}
\varphi\left(d\left(x_{n}, x_{n+1}\right)\right) & =\varphi\left(d\left(T^{n} x_{0}, T^{n+1} x_{0}\right)\right) \\
& =\varphi\left(d\left(T\left(T^{n-1} x_{0}\right), T\left(T^{n} x_{0}\right)\right)\right) \\
& \leq p\left(\varphi\left(d\left(T^{n-1} x_{0}, T^{n} x_{0}\right)\right)+\varphi\left(d\left(T^{n} x_{0}, T^{n+1} x_{0}\right)\right)\right) \\
& =p\left(\varphi\left(d\left(x_{n-1}, x_{n}\right)\right)+\varphi\left(d\left(x_{n}, x_{n+1}\right)\right)\right) .
\end{aligned}
$$

It implies that

$$
(1-p) \varphi\left(d\left(x_{n-1}, x_{n}\right)\right)<p \varphi\left(d\left(x_{n}, x_{n+1}\right)\right), \forall n \in \mathbb{N}
$$

Since $1-p \geq p$,

$$
d\left(x_{n}, x_{n+1}\right)<d\left(x_{n-1}, x_{n}\right), \quad \forall n \in \mathbb{N} .
$$

This means that the sequence $\left\{d\left(x_{n}, x_{n+1}\right)\right\}_{n \in \mathbb{N}}$ is strictly decreasing and hence convergent, so there exists $t \geq 0$ such that $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=t$.

For $m, n \in \mathbb{N}$ with $n<m$, we have

$$
\varphi\left(d\left(x_{m}, x_{n}\right)\right) \leq \varphi\left(d\left(x_{m-1}, x_{m}\right)+\varphi\left(d\left(x_{n-1}, x_{n}\right)\right)\right),
$$

and hence $\varphi\left(d\left(x_{m}, x_{n}\right)\right) \leq \varphi(t)$ as $m, n \rightarrow \infty$. This implies that $d\left(x_{m}, x_{n}\right) \leq t$ as $m, n \rightarrow \infty$, therefore, $\left\{x_{n}\right\}$ is a bounded sequence. Hence, $\left\{x_{n}\right\}$ has a subsequence which converges to $u$, that is, $\lim _{k \rightarrow \infty} x_{n_{k}}=u$. By the continuity of $T$ we have $T u=T\left(\lim _{k \rightarrow \infty} T^{n_{k}} x_{0}\right)=\lim T x_{n_{k}+1} x_{0}=u$, thus, $u$ is a fixed point of $T$.

Next, we show the uniqueness of the fixed point ot $T$. Let $z(\neq u)$ be an another fixed point of $T$. Then

$$
\varphi(d(T z, T u)) \leq p(\varphi(d(z, T z))+\varphi(d(u, T u)))
$$

it implies that

$$
\varphi(d(z, u)) \leq p(\varphi(d(z, z))+\varphi(d(u, u)))
$$

which is a contradiction. Hence, $u=z$. This completes the proof.
Example 3.12. Let $(X, d)$ a bounded compact rectangular $b$-metric space, where $X=[0, \infty[$ and

$$
d(x, y)= \begin{cases}(x+y)^{2}, & \text { if } x \neq y \\ 0, & \text { if } x=y\end{cases}
$$

Define $T: X \rightarrow X$ by

$$
T x= \begin{cases}\frac{1}{3}, & \text { if } 0 \leq x \leq 2 \\ \frac{1}{x}, & \text { if } x>2\end{cases}
$$

Then, for $\varphi(t)=3 t$, we have

$$
d(T x, T y)<\frac{1}{2}(d(x, T x)+d(y, T y))
$$

For $x \neq y$ and $x, y>2$, we have

$$
d(T x, T y)=\left(\frac{1}{x}+\frac{1}{y}\right)^{2}<1
$$

and

$$
\frac{1}{2}(d(x, T x)+d(y, T y))=\frac{1}{2}\left(\left(x+\frac{1}{x}\right)^{2}+\left(y+\frac{1}{y}\right)^{2}\right)>1 .
$$

Similary, for $0 \leq x \leq 2$ and $y>2$, we have

$$
d(T x, T y)=\left(\frac{1}{3}+\frac{1}{y}\right)^{2}
$$

and

$$
\frac{1}{2}(d(x, T x)+d(y, T y))=\frac{1}{2}\left(\left(x+\frac{1}{3}\right)^{2}+\left(y+\frac{1}{y}\right)^{2}\right)>\left(\frac{1}{3}+\frac{1}{y}\right)^{2} .
$$

Thus, $T$ has a unique fixed point $x=3$.
Garai et al. [8] defined $T$-orbitally compact metric spaces and derived a fixed point result for the same. The definition of $T$-orbitally compactness can be extended to rectangular $b$-metric spaces as follows.

Definition 3.13. Let $(X, d)$ be a rectangular $b$-metric space and $T$ be a selfmapping on $X$. The orbit of $T$ at $x \in X$ is defined as

$$
O_{x}(T)=\left\{x, T x, T^{2} x, T^{3} x, \ldots\right\}
$$

If every sequence in $O_{x}(T)$ has a convergent subsequence for all $x \in X, X$ is said to be $T$-orbitally compact.

It is easy to see that every compact rectangular $b$-metric space is $T$-orbitally compact. Also the bounded compactness and $T$-orbitally compactness are totally independent. Moreover, $T$-orbitally compactness of $X$ does not give to be complete.

Theorem 3.14. Let $(X, d)$ be a T-orbitally compact rectangular b-metric space and $T$ satisfying (3.4) with $p<\frac{1}{2}$ and $b p<1$. Then $T$ has a unique fixed point $u$ and

$$
\lim _{n \rightarrow \infty} T^{n} x=u, \quad \forall x \in X
$$

Proof. Let $x_{0} \in X$ be arbitrary but fixed, and consider the iterative sequence $\left\{x_{n}\right\}$, where $x_{n}=T^{n} x_{0}$ for each $n \in \mathbb{N}$. We denote $d_{n}=d\left(x_{n}, x_{n+1}\right)$ for $n \in \mathbb{N}$. Then, by (3.4) we have

$$
\varphi\left(d_{n}\right) \leq p\left(\varphi\left(d_{n-1}\right)+\varphi\left(d_{n}\right)\right)
$$

it implies that

$$
(1-p) \varphi\left(d_{n}\right) \leq p \varphi\left(d_{n-1}\right)
$$

Since $1-p \geq p, p<\frac{1}{2}$ and $\varphi$ is strictly increasing, we get $d_{n}<d_{n-1}$, this show that $\left\{d_{n}\right\}$ is a strictly decreasing sequence of non negative real numbers and hence convergent. Since $X$ is $T$-orbitally compact, so $\left\{x_{n}\right\}$ has a convergent subsequence $\left\{x_{n_{k}}\right\}$ with $\lim _{k} x_{n_{k}}=u$

$$
\lim _{k} d_{n_{k}}=\lim _{k} d\left(x_{n_{k}}, x_{n_{k+1}}\right)=d\left(\lim _{k} x_{n_{k}}, \lim _{k} x_{n_{k+1}}\right)=0 .
$$

Therefore, $\lim _{n \rightarrow \infty} d_{n}=0$.
We have for $n, m \in \mathbb{N}$,

$$
\begin{aligned}
\varphi\left(d\left(x_{n}, x_{m}\right)\right) & \leq p\left(\varphi\left(d\left(x_{n-1}, x_{n}\right)\right)+\varphi\left(d\left(x_{m-1}, x_{m}\right)\right)\right) \\
& =p\left(\varphi\left(d_{n-1}\right)+\varphi\left(d_{m-1}\right)\right) \\
& \rightarrow 0 \quad \text { as } n, m \rightarrow \infty
\end{aligned}
$$

this implies $d\left(x_{n}, x_{m}\right) \rightarrow 0$ as $n \rightarrow \infty$. This means that $\left\{x_{n}\right\}$ is a Cauchy sequence and $x_{n} \rightarrow u$ as $n \rightarrow \infty$. Also we have

$$
\begin{aligned}
\varphi(d(u, T u)) \leq & \varphi\left(b\left(d\left(u, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, T u\right)\right)\right) \\
\leq & b \varphi\left(d\left(u, x_{n}\right)\right)+b p\left[\varphi\left(d\left(x_{n-1}, x_{n}\right)\right)+\varphi\left(d\left(x_{n}, x_{n+1}\right)\right)\right. \\
& \left.+\varphi\left(d\left(x_{n}, x_{n+1}\right)+\varphi(d(u, T u))\right)\right] .
\end{aligned}
$$

This implies that

$$
\begin{aligned}
&(1-b p) \varphi(d(u, T u)) \leq b \varphi\left(d\left(u, x_{n}\right)\right)+b p\left[\varphi\left(d\left(x_{n-1}, x_{n}\right)\right)\right. \\
&+\varphi\left(d\left(x_{n}, x_{n+1}\right)\right)+\varphi\left(d\left(x_{n}, x_{n+1}\right)\right] \\
& \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

Therefore, $T u=u$.
Next, let $u^{*}$ be an another fixed point of $T$. Then, we have

$$
d\left(u, u^{*}\right)=d\left(T u, T u^{*}\right)<\frac{1}{2}\left(d(u, T u)+d\left(T u^{*}, T u^{*}\right)\right)<0
$$

which is a contradiction. Hence, $T$ has a unique fixed point.
Let us point out that Theorem 3.14 does not hold for $p \geq \frac{1}{2}$.
To find a solution we assume that $T$ is an asymptotically regular mapping, that is, $\lim _{n \rightarrow \infty} d\left(T^{n} x, T^{n+1} x\right)=0$.

Theorem 3.15. Let $(X, d)$ be a complete rectangular $b$-metric space and $T$ : $X \rightarrow X$ be an asymptotically regular mapping satisfying (3.4) for some $p$ with $b p<1$. Then $T$ has a unique fixed point.

Proof. Let $x \in X$ and define the sequence $x_{n}=T^{n} x, n \in \mathbb{N}$. Since $T$ is an asymptotically regular mapping, we get for $m>n$,

$$
\begin{aligned}
\varphi\left(d\left(T^{n+1} x, T^{m+1} x\right)\right) & \leq p\left(\varphi\left(d\left(T^{n} x, T^{n+1} x\right)\right)+\varphi\left(d\left(T^{m} x, T^{m+1} x\right)\right)\right) \\
& \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

it implies that

$$
d\left(T^{n+1} x, T^{m+1} x\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

Thus $\left\{x_{n}\right\}$ is a Cauchy sequence and convergent in $X$ with $\lim _{n \rightarrow \infty} x_{n}=u$. Hence, we have

$$
\begin{aligned}
\varphi(d(u, T u)) \leq & \varphi\left(b\left[d\left(u, T^{n} x\right)+d\left(T^{n} x, T^{n+1} x\right)+d\left(T^{n+1} x, T u\right)\right]\right) \\
\leq & \left.b \varphi\left(d\left(u, T^{n} x\right)\right)+b \varphi\left(d\left(T^{n} x, T^{n+1} x\right)\right)+b \varphi\left(d\left(T^{n+1} x, T u\right)\right)\right) \\
\leq & b \varphi\left(d\left(u, T^{n} x\right)\right)+b p\left[\varphi\left(d\left(T^{n-1} x, T^{n} x\right)\right)+\varphi\left(d\left(T^{n} x, T^{n+1} x\right)\right)\right. \\
& +\varphi\left(d\left(T^{n} x, T^{n+1} x\right)\right)+\varphi(d(u, T u)),
\end{aligned}
$$

this implies that

$$
\begin{aligned}
(1-b p) \varphi(d(u, T u)) \leq & b \varphi\left(d\left(u, T^{n} x\right)\right) \\
& \left.+b p\left[\varphi\left(d\left(T^{n-1} x, T^{n} x\right)\right)+2 \varphi\left(d\left(T^{n} x, T^{n+1} x\right)\right)\right)\right]
\end{aligned}
$$

When $n \rightarrow \infty$, we obtain $d(u, T u)=0$. Therefore, $u$ is a fixed point of $T$.
Let $u^{*}$ be an another fixed point of $T$. Then

$$
d\left(u, u^{*}\right)=d\left(T u, T u^{*}\right)<P\left(d(u, T u)+d\left(T u^{*}, T u^{*}\right)\right)=0,
$$

which is a contradiction. Hence $T$ has a unique fixed point.

Example 3.16. Let $(X, d)$ be a complete rectangular $b$-metric space and $T$ : $X \rightarrow X$ be an asymptotically regular mapping satisfying $T x=\frac{x}{3}$ for all $x \in X$ and $d(x, y)=|x-y|^{2}, b=2$ and $p<\frac{1}{2}$. Then for $\varphi(t)=\sqrt{t}$, we have $|x-y|<2(|x|+|y|)$. Therefore, $T$ has a unique fixed point $x=0$.

Theorem 3.17. Let $(X, d)$ be a complete rectangular $b$-metric space and $T$ : $X \rightarrow X$ be an asymptotically regular mapping satisfying:

$$
\varphi(d(T x, T y)) \leq p[\varphi(d(x, y))+\varphi(d(x, T x))+\varphi(d(y, T y))], \forall x, y \in X
$$

for some $p$ with $b p<1$. Then $T$ has a unique fixed point.

Proof. Let $x \in X$ and define the sequence $x_{n}=T^{n} x, \quad n \in \mathbb{N}$. Since $T$ is an asymptotically regular mapping, we get for $m>n$,

$$
\begin{aligned}
& \varphi\left(d\left(T^{n+1} x, T^{m+1} x\right)\right) \leq p\left(\varphi\left(d\left(T^{n} x, T^{m} x\right)\right)+\varphi\left(d\left(T^{n} x, T^{n+1} x\right)\right)\right. \\
&\left.+\varphi\left(d\left(T^{m} x, T^{m+1} x\right)\right)\right) \\
& \rightarrow 0 \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

Thus, $\left\{x_{n}\right\}$ is a Cauchy sequence and convergent in $X$ with $\lim _{n \rightarrow \infty} x_{n}=u$. Also, we have

$$
\begin{aligned}
\varphi(d(u, T u)) \leq & \varphi\left(b\left[d\left(u, T^{n} x\right)+d\left(T^{n} x, T^{n+1} x\right)+d\left(T^{n+1} x, T u\right)\right]\right) \\
\leq & \left.b \varphi\left(d\left(u, T^{n} x\right)\right)+b \varphi\left(d\left(T^{n} x, T^{n+1} x\right)\right)+b \varphi\left(d\left(T^{n+1} x, T u\right)\right)\right) \\
\leq & b \varphi\left(d\left(u, T^{n} x\right)\right)+b p\left[\varphi\left(d\left(T^{n-1} x, T^{n} x\right)\right)\right. \\
& +\varphi\left(d\left(T^{n-1} x, T^{n} x\right)\right)+\varphi\left(d\left(T^{n} x, T^{n+1} x\right)\right) \\
& \left.+\varphi\left(d\left(T^{n} x, u\right)\right)+\varphi\left(d\left(T^{n} x, T^{n+1} x\right)\right)+\varphi(d(u, T u))\right],
\end{aligned}
$$

this implies that

$$
\begin{aligned}
(1-b p) \varphi(d(u, T u)) \leq & b(1+p) \varphi\left(d\left(u, T^{n} x\right)\right)+2 b p\left[\varphi\left(d\left(T^{n-1} x, T^{n} x\right)\right)\right. \\
& \left.\left.+2 \varphi\left(d\left(T^{n} x, T^{n+1} x\right)\right)\right)\right]
\end{aligned}
$$

When $n \rightarrow \infty$, we obtain $d(u, T u)=0$. Therefore, $u$ is a fixed point of $T$.
Let $u^{*}(\neq u)$ be an another fixed point of $T$. Then

$$
d\left(u, u^{*}\right)=d\left(T u, T u^{*}\right)<P\left(d(u, T u)+d\left(T u^{*}, T u^{*}\right)\right)=0,
$$

which is a contradiction. Hence, $T$ has a unique fixed point.
Acknowledgments: It is our great pleasure to thank the referee for his careful reading of the paper and for several helpful suggestions.

## References

[1] I.A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal., Unianowsk Gos. Ped. Inst., 30 (1989), 26-37.
[2] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5-11.
[3] Í. Demir, Fixed point theorems in complex valued fuzzy b-metric spaces with application to integral equations, Miskolc Math. Notes, 22 (2021), 153-171.
[4] H.S. Ding, M. Imdad, S. Radenovic and J. Vujakovic, On some fixed point results in b-metric, rectangular and b-rectangular metric spaces, Arab J. Math. Sci., 22 (2016), 151-164.
[5] N.V. Dung, A sharp improvement of fixed point results for quasi-contractions in b-metric spaces, Miskolc Math. Notes, 21 (2020), 451-461.
[6] R.E. Edwards, Functional Analysis: Theory and Applications, New York, NY: Holt, Rinehart and Winston, 1965.
[7] B. Fisher, A fixed point theorem for compact metric spaces, Publ. Inst. Math., 25 (1978), 193-194.
[8] H. Garai, L.K. Dey and T. Senapati, On Kannan-type contractive mappings, Num. Funct. Anal. Opti., 39(13) (2018), 14661476.
[9] R. George, S. Radenovic, K.P. Reshma and S. Shukla, Rectangular b-metric spaces and contraction principle, J. Nonlinear Sci. Appl., 8 (2015), 1005-1013.
[10] H.A. Hammad and M. De la Sen, Generalized contractive mappings and related results in b-metric like spaces with an application, Symmetry, 11(5) (2019), Paper No. 667.
[11] H.A. Hammad and M. De la Sen, A solution of Fredholm integral equation by using the cyclic $\eta_{s}^{q}$-rational contractive mappings technique in b-metric-like spaces, Symmetry 11(9) (2019), Paper No. 1184.
[12] N. Haokip and N. Goswami, Some fixed point theorems for generalized Kannan type mappings in b-metric spaces, Proyecciones, 38(4) (2019), 763-782. https://doi.org/issn.0717-6279-2019-04-0050.
[13] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71-76.
[14] A. Kari, M. Rossafi, E. Marhrani and M. Aamri, $\theta-\phi$-Contraction on ( $\alpha, \eta$ )-complete rectangular b-metric spaces, Int. J. Math. Math. Sci., 2020 (2020), Article ID 5689458.
[15] A. Kari, M. Rossafi, E. Marhrani and M. Aamri, New fixed point theorems for $\theta-\phi$ contraction on complete rectangular b-metric spaces, Abstr. Appl. Anal., 2020 (2020), Article ID 8833214.
[16] M.A. Khan, On fixed point theorems. Math. Japonica, 23 (1978), 201-204.
[17] N. Mlaiki, N. Dedovic, H. Aydi, M.G. Filipoviac, B. Bin-Mohsin and S. Radenovic, Some new observations on Geraghty and Ciric type results in b-metric spaces, Math. $\mathbf{7}$ (2019), Paper No. 643.
[18] Z. Mostefaoui, M. Bousselsal and J.K. Kim, Fixed point theory concerning rectangular b-metric spaces, Nonlinear Funct. Anal. Appl., 24(1) (2019), 45-59.
[19] H.K. Nashine, S. Shil and Z. Kadelburg, Common positive solutions for two non-linear matrix equations using fixed point results in b-metric-like spaces, Aequationes Math., 96 (2022), 17-41.
[20] S. Radenovic, T. Dosenovic, V. Öztürk and C. Dolicanin, A note on the paper: Nonlinear integral equations with new admissibility types in b-metric spaces, J. Fixed Point Theory Appl., 19 (2017), 2287-2295.
[21] V. Subrahmanyam, Completeness and fixed points, Monatsh. Math., 80(4) (1975), 325330.


[^0]:    ${ }^{0}$ Received December 3, 2021. Revised February 25, 2022. Accepted April 12, 2022.
    ${ }^{0} 2020$ Mathematics Subject Classification: $47 \mathrm{H} 10,54 \mathrm{H} 25$.
    ${ }^{0}$ Keywords: Fixed point, rectangular $b$-metric spaces, Subadditive altering distance, Kannan type mappings.
    ${ }^{0}$ Corresponding author: H. Massit(massithafida@yahoo.fr).

