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Abstract. Several common fixed point theorems for a pair of weakly compatible mappings

satisfying contractive inequalities of integral type in a metric space are proved. The results

obtained in this paper improve or differ from a few results existing in the literature.

1. Introduction and preliminaries

Throughout this paper, we assume that R+ = [0,+∞), R = (−∞,+∞),
N0 = {0} ∪ N, where N denotes the set of all positive integers and

Φ1 =

{
ϕ | ϕ : R+ → R+ is Lebesgue integrable and summable on each

compact subset of R+ and

∫ ε

0
ϕ(t)dt > 0,∀ε > 0

}
;
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Φ2 =
{
ϕ | ϕ : R+ → R+ is nondecreasing continuous and ϕ(t) = 0⇔ t = 0

}
;

Φ3 =
{
ϕ | ϕ : R+ → R+ is lower semi-continuous and ϕ(t) > 0, ∀t > 0

}
;

Φ4 =
{
ϕ | ϕ ∈ Φ3 and ϕ(0) = 0

}
;

Φ5 =
{
ϕ | ϕ : R+ → R+ is nondecreasing continuous such that ϕ is

positive on (0,+∞), ϕ(0) = 0 and lim
t→+∞

ϕ(t) = +∞
}
.

In 2002, Branciari [2] gave an integral version of the outstanding Banach
contraction principle and became the first to research the existence of fixed
points for the contractive mappings of integral type.

Theorem 1.1. ([2]) Let (X, d) be a complete metric space and f : X → X be
a mapping satisfying∫ d(fx,fy)

0
ϕ(t)dt ≤ c

∫ d(x,y)

0
ϕ(t)dt, ∀x, y ∈ X, (1.1)

where ϕ ∈ Φ1 and c ∈ [0, 1) is a constant. Then f has a unique fixed point
a ∈ X such that limn→∞ f

nx = a for each x ∈ X.

Later on, the researchers [1,5,8-13,15] and others extended the result of
Branciari and gained a lot of fixed point and common fixed point theorems for
various contractive mappings of integral type in metric spaces. In particular,
Altun et al. [1] proved a common fixed point theorem of weakly compatible
mappings concerning a general contractive condition of integral type. Kumar
et al. [5] gave a common fixed point theorem for a pair of compatible mappings
satisfying a contractive inequality of integral type.

Theorem 1.2. ([5]) Let (X, d) be a complete metric space and f, g : X → X
be compatible mappings such that

f(X) ⊂ g(X), g is continuous

and ∫ d(fx,fy)

0
ϕ(t)dt ≤ c

∫ d(gx,gy)

0
ϕ(t)dt, ∀x, y ∈ X, (1.2)

where ϕ ∈ Φ1 and c ∈ [0, 1) is a constant. Then f and g have a unique
common fixed point in X.

In 2001, Rhoades [14] introduced the concept of ϕ-weakly contractive map-
pings and proved the following fixed point theorem, which extends the Banach
contraction principle.
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Theorem 1.3. ([14]) Let f be a mapping from a complete metric space (X, d)
into itself satisfying

d(fx, fy) ≤ d(x, y)− ϕ(d(x, y)), ∀x, y ∈ X, (1.3)

where ϕ ∈ Φ5. Then f has a unique fixed point in X.

Liu et al. [11] proved the following results for contractive mappings of
integral type.

Theorem 1.4. ([11]) Let f be a mapping from a complete metric space (X, d)
into itself satisfying∫ d(fx,fy)

0
ϕ(t)dt ≤

∫ d(x,y)

0
ϕ(t)dt−

∫ ψ(d(x,y))

0
ϕ(t)dt, ∀x, y ∈ X, (1.4)

where ϕ ∈ Φ1 and ψ ∈ Φ4. Then f has a unique fixed point a ∈ X such that
limn→∞ f

nx = a for each x ∈ X.

Theorem 1.5. ([11]) Let f be a mapping from a complete metric space (X, d)
into itself satisfying∫ d(fx,fy)

0
ϕ(t)dt ≤

∫ M(x,y)

0
ϕ(t)dt−

∫ ψ(M(x,y))

0
ϕ(t)dt, ∀x, y ∈ X, (1.5)

where

M(x, y) = max

{
d(x, y), d(x, fx), d(y, fy),

1

2
[d(x, fy) + d(y, fx)]

}
, (1.6)

ϕ ∈ Φ1 and ψ ∈ Φ4. Then f has a unique fixed point a ∈ X such that
limn→∞ f

nx = a for each x ∈ X.

Remark 1.6. Clearly, Φ4 ⊆ Φ3, Φ5 ⊆ Φ2 ∩ Φ4 and Theorem 1.4 extends
Theorem 1.3.

Inspired by the results in [1-15], we introduce four classes of mappings
satisfying the contractive inequalities of integral type as follows:

φ

(∫ d(fx,fy)

0
ϕ(t)dt

)
≤ φ

(∫ Mi(x,y)

0
ϕ(t)dt

)
−
∫ ψ(Mi(x,y))

0
ϕ(t)dt, ∀x, y ∈ X,

(1.7)
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where i ∈ {1, 2, 3, 4}, (ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ3,

M1(x, y) = max

{
d(gx, gy), d(fx, gx), d(fy, gy),

1

2
[d(fx, gy) + d(gx, fy)],

d(fx, gy)d(gx, fy)

1 + d(fx, fy)
,
[1 + d(fx, gx)]d(fy, gy)

1 + d(fx, fy)
,

d(fx, gx)[1 + d(fy, gy)]

1 + d(fx, fy)
,
[1 + d(fx, gy)]d(gx, fy)

2 + d(fx, fy)
,

d(fx, gy)[1 + d(gx, fy)]

2 + d(fx, fy)
,
[1 + d(fx, gy)]d(gx, fy)

2 + d(gx, gy)
,

d(fx, gy)[1 + d(gx, fy)]

2 + d(gx, gy)

}
,

(1.8)

M2(x, y) = max

{
d(gx, gy), d(fx, gx), d(fy, gy),

1

2
[d(fx, gy) + d(gx, fy)],

d(fx, gy)d(gx, fy)

1 + d(fx, fy)
,
d(fx, gy)d(gx, fy)

1 + d(gx, gy)

}
,

(1.9)

M3(x, y) = max

{
d(gx, gy), d(fx, gx), d(fy, gy),

1

2
[d(fx, gy) + d(gx, fy)]

}
(1.10)

and

M4(x, y) = d(gx, gy), (1.11)

some of which include (1.3)-(1.5) as special cases. Under certain conditions we
prove the existence and uniqueness of common fixed points for these mappings.
An example is constructed to show that Theorems 2.1 and 2.2 are different
from Theorems 1.1-1.5.

Recall that a pair of self mappings f and g in a metric space (X, d) are said
to be weakly compatible if they commute at their coincidence points.

The following lemma plays a key role in this paper.

Lemma 1.7. ([7]) Let ϕ ∈ Φ1 and {rn}n∈N be a nonnegative sequence with
limn→∞ rn = a. Then

lim
n→∞

∫ rn

0
ϕ(t)dt =

∫ a

0
ϕ(t)dt.

2. Common fixed point theorems

Our main results are as follows:
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Theorem 2.1. Let (X, d) be a metric space, f and g : X → X be weakly
compatible mappings satisfying

φ

(∫ d(fx,fy)

0
ϕ(t)dt

)
≤ φ

(∫ M1(x,y)

0
ϕ(t)dt

)
−
∫ ψ(M1(x,y))

0
ϕ(t)dt, ∀x, y ∈ X,

(2.1)
where (ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ3. If f(X) ⊆ g(X), g(X) is complete and
M1(x, y) is defined by (1.8). Then f and g have a unique common fixed point
in X.

Proof. Firstly, we attest that f and g have at most a common fixed point in
X. Assume that f and g have two different common fixed points a, b ∈ X.
Using (1.8), (2.1) and (ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ3, we infer that

M1(a, b) = max

{
d(ga, gb), d(fa, ga), d(fb, gb),

1

2
[d(fa, gb) + d(ga, fb)],

d(fa, gb)d(ga, fb)

1 + d(fa, fb)
,
[1 + d(fa, ga)]d(fb, gb)

1 + d(fa, fb)
,

d(fa, ga)[1 + d(fb, gb)]

1 + d(fa, fb)
,
[1 + d(fa, gb)]d(ga, fb)

2 + d(fa, fb)
,

d(fa, gb)[1 + d(ga, fb)]

2 + d(fa, fb)
,
[1 + d(fa, gb)]d(ga, fb)

2 + d(ga, gb)
,

d(fa, gb)[1 + d(ga, fb)]

2 + d(ga, gb)

}
= max

{
d(a, b), 0, 0, d(a, b),

d2(a, b)

1 + d(a, b)
, 0, 0,

[1 + d(a, b)]d(a, b)

2 + d(a, b)
,
d(a, b)[1 + d(a, b)]

2 + d(a, b)
,

[1 + d(a, b)]d(a, b)

2 + d(a, b)
,
d(a, b)[1 + d(a, b)]

2 + d(a, b)

}
= d(a, b)

and

0 < φ

(∫ d(a,b)

0
ϕ(t)dt

)
= φ

(∫ d(fa,fb)

0
ϕ(t)dt

)
≤ φ

(∫ M1(a,b)

0
ϕ(t)dt

)
−
∫ ψ(M1(a,b))

0
ϕ(t)dt
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= φ

(∫ d(a,b)

0
ϕ(t)dt

)
−
∫ ψ(d(a,b))

0
ϕ(t)dt

< φ

(∫ d(a,b)

0
ϕ(t)dt

)
,

which is impossible. Accordingly, f and g have at most a common fixed point.
Secondly, we claim that f and g have a common fixed point in X. Let x0

be an arbitrary point in X. Since f(X) ⊆ g(X), it follows that there exists a
sequence {xn}n∈N0 in X satisfying

fxn = gxn+1, ∀n ∈ N0. (2.2)

Put dn = d(fxn, fxn+1) for all n ∈ N0. Assume that dn0 = 0 for some n0 ∈ N0.
It follows that

fxn0 = fxn0+1 = gxn0+1 (2.3)

and

f2xn0+1 = fgxn0+1 = gfxn0+1 = g2xn0+1. (2.4)

Now we assert that fxn0+1 = f2xn0+1. Otherwise, in view of (1.8), (2.1)-
(2.4) and (ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ3, we deduce that

M1(fxn0+1, xn0+1)

= max

{
d(gfxn0+1, gxn0+1), d(f2xn0+1, gfxn0+1), d(fxn0+1, gxn0+1),

1

2
[d(f2xn0+1, gxn0+1) + d(gfxn0+1, fxn0+1)],

d(f2xn0+1, gxn0+1)d(gfxn0+1, fxn0+1)

1 + d(f2xn0+1, fxn0+1)
,

[1 + d(f2xn0+1, gfxn0+1)]d(fxn0+1, gxn0+1)

1 + d(f2xn0+1, fxn0+1)
,

d(f2xn0+1, gfxn0+1)[1 + d(fxn0+1, gxn0+1)]

1 + d(f2xn0+1, fxn0+1)
,

[1 + d(f2xn0+1, gxn0+1)]d(gfxn0+1, fxn0+1)

2 + d(f2xn0+1, fxn0+1)
,

d(f2xn0+1, gxn0+1)[1 + d(gfxn0+1, fxn0+1)]

2 + d(f2xn0+1, fxn0+1)
,

[1 + d(f2xn0+1, gxn0+1)]d(gfxn0+1, fxn0+1)

2 + d(gfxn0+1, gxn0+1)
,

d(f2xn0+1, gxn0+1)[1 + d(gfxn0+1, fxn0+1)]

2 + d(gfxn0+1, gxn0+1)

}
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= max

{
d(f2xn0+1, fxn0+1), 0, 0, d(f2xn0+1, fxn0+1),

d2(f2xn0+1, fxn0+1)

1 + d(f2xn0+1, fxn0+1)
, 0, 0,

[1 + d(f2xn0+1, fxn0+1)]d(f2xn0+1, fxn0+1)

2 + d(f2xn0+1, fxn0+1)
,

d(f2xn0+1, fxn0+1)[1 + d(f2xn0+1, fxn0+1)]

2 + d(f2xn0+1, fxn0+1)
,

[1 + d(f2xn0+1, fxn0+1)]d(f2xn0+1, fxn0+1)

2 + d(f2xn0+1, fxn0+1)
,

d(f2xn0+1, fxn0+1)[1 + d(f2xn0+1, fxn0+1)]

2 + d(f2xn0+1, fxn0+1)

}
= d(f2xn0+1, fxn0+1)

and

0 < φ

(∫ d(f2xn0+1,fxn0+1)

0
ϕ(t)dt

)
≤ φ

(∫ M1(fxn0+1,xn0+1)

0
ϕ(t)dt

)
−
∫ ψ(M1(fxn0+1,xn0+1))

0
ϕ(t)dt

= φ

(∫ d(f2xn0+1,fxn0+1)

0
ϕ(t)dt

)
−
∫ ψ(d(f2xn0+1,fxn0+1))

0
ϕ(t)dt

< φ

(∫ d(f2xn0+1,fxn0+1)

0
ϕ(t)dt

)
,

which is a contradiction. Therefore,

fxn0+1 = f2xn0+1,

which together with (2.4) means that fxn0+1 is a common fixed point of f
and g in X.

Assume that dn 6= 0 for all n ∈ N0. We show that dn ≤ dn−1 for all n ∈ N.
Or else, dn > dn−1 for some n ∈ N. Making use of (1.8), (2.1), (2.2) and
(ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ3, we conclude that
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M1(xn, xn+1) = max

{
d(gxn, gxn+1), d(fxn, gxn), d(fxn+1, gxn+1),

1

2
[d(fxn, gxn+1) + d(gxn, fxn+1)],

d(fxn, gxn+1)d(gxn, fxn+1)

1 + d(fxn, fxn+1)
,

[1 + d(fxn, gxn)]d(fxn+1, gxn+1)

1 + d(fxn, fxn+1)
,

d(fxn, gxn)[1 + d(fxn+1, gxn+1)]

1 + d(fxn, fxn+1)
,

[1 + d(fxn, gxn+1)]d(gxn, fxn+1)

2 + d(fxn, fxn+1)
,

d(fxn, gxn+1)[1 + d(gxn, fxn+1)]

2 + d(fxn, fxn+1)
,

[1 + d(fxn, gxn+1)]d(gxn, fxn+1)

2 + d(gxn, gxn+1)
,

d(fxn, gxn+1)[1 + d(gxn, fxn+1)]

2 + d(gxn, gxn+1)

}
= max

{
dn−1, dn−1, dn,

1

2
d(fxn−1, fxn+1), 0,

(1 + dn−1)dn
1 + dn

,

dn−1(1 + dn)

1 + dn
,
d(fxn−1, fxn+1)

2 + dn
, 0,

d(fxn−1, fxn+1)

2 + dn−1
, 0

}
= max{dn−1, dn}
= dn

and

0 < φ

(∫ dn

0
ϕ(t)dt

)
= φ

(∫ d(fxn,fxn+1)

0
ϕ(t)dt

)
≤ φ

(∫ M1(xn,xn+1)

0
ϕ(t)dt

)
−
∫ ψ(M1(xn,xn+1))

0
ϕ(t)dt

= φ

(∫ dn

0
ϕ(t)dt

)
−
∫ ψ(dn)

0
ϕ(t)dt

< φ

(∫ dn

0
ϕ(t)dt

)
,

which is illogical. Hence, dn ≤ dn−1 for all n ∈ N and

M1(xn, xn+1) = dn−1, ∀n ∈ N. (2.5)
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It is apparent that the sequence {dn}n∈N0 is nonincreasing and bounded, which
implies that there exists r with

lim
n→∞

dn = r ≥ 0. (2.6)

Now, we certify that r = 0. Otherwise, r > 0. Put

lim inf
n→∞

ψ(dn) = α. (2.7)

It follows that there exists a subsequence {dn(k)−1}k∈N of {dn}n∈N0 satisfying

lim
k→∞

ψ(dn(k)−1) = α. (2.8)

Note that ψ ∈ Φ3 and (2.6)-(2.8) yield that

α ≥ ψ(r) > 0. (2.9)

In terms of (2.1), (2.5)-(2.9), (ϕ, φ, ψ) ∈ Φ1×Φ2×Φ3 and Lemma 1.1, we get
that

0 < φ

(∫ r

0
ϕ(t)dt

)
= lim sup

k→∞
φ

(∫ dn(k)

0
ϕ(t)dt

)
= lim sup

k→∞
φ

(∫ d(fxn(k),fxn(k)+1)

0
ϕ(t)dt

)
≤ lim sup

k→∞

[
φ

(∫ M1(xn(k),xn(k)+1)

0
ϕ(t)dt

)
−
∫ ψ(M1(xn(k),xn(k)+1))

0
ϕ(t)dt

]
≤ lim sup

k→∞
φ

(∫ M1(xn(k),xn(k)+1)

0
ϕ(t)dt

)
− lim inf

k→∞

∫ ψ(M1(xn(k),xn(k)+1))

0
ϕ(t)dt

= lim sup
k→∞

φ

(∫ dn(k)−1

0
ϕ(t)dt

)
− lim inf

k→∞

∫ ψ(dn(k)−1)

0
ϕ(t)dt

= φ

(∫ r

0
ϕ(t)dt

)
−
∫ α

0
ϕ(t)dt

≤ φ
(∫ r

0
ϕ(t)dt

)
−
∫ ψ(r)

0
ϕ(t)dt

< φ

(∫ r

0
ϕ(t)dt

)
,

which is absurd. Thus r = 0, that is,

lim
n→∞

dn = 0. (2.10)

Next, we verify that {fxn}n∈N0 is a Cauchy sequence. If not, there exist a
constant ε > 0 and two sequences {m(k)}n∈N0 and {n(k)}n∈N0 in N such that
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k < m(k) < n(k) < m(k + 1) and

d(fxm(k), fxn(k)) ≥ ε and d(fxm(k), fxn(k)−1) < ε, ∀k ∈ N. (2.11)

Notice that

d(fxm(k), fxn(k)) ≤ d(fxm(k), fxn(k)−1) + dn(k)−1, ∀k ∈ N;

|d(fxm(k), fxn(k))− d(fxm(k), fxn(k)−1)| ≤ dn(k)−1, ∀k ∈ N;

|d(fxm(k), fxn(k))− d(fxm(k)−1, fxn(k))| ≤ dm(k)−1, ∀k ∈ N;

|d(fxm(k)−1, fxn(k)−1)− d(fxm(k)−1, fxn(k))| ≤ dn(k)−1, ∀k ∈ N.

(2.12)

By means of (2.10)-(2.12), we obtain that

ε = lim
k→∞

d(fxm(k), fxn(k)) = lim
k→∞

d(fxm(k), fxn(k)−1)

= lim
k→∞

d(fxm(k)−1, fxn(k)) = lim
k→∞

d(fxm(k)−1, fxn(k)−1).
(2.13)

On account of (1.8), (2.2), (2.10) and (2.13), we receive that

M1(xm(k), xn(k)) = max

{
d(gxm(k), gxn(k)), d(fxm(k), gxm(k)), d(fxn(k), gxn(k)),

1

2
[d(fxm(k), gxn(k)) + d(gxm(k), fxn(k))],

d(fxm(k), gxn(k))d(gxm(k), fxn(k))

1 + d(fxm(k), fxn(k))
,

[1 + d(fxm(k), gxm(k))]d(fxn(k), gxn(k))

1 + d(fxm(k), fxn(k))
,

d(fxm(k), gxm(k))[1 + d(fxn(k), gxn(k))]

1 + d(fxm(k), fxn(k))
,

[1 + d(fxm(k), gxn(k))]d(gxm(k), fxn(k))

2 + d(fxm(k), fxn(k))
,

d(fxm(k), gxn(k))[1 + d(gxm(k), fxn(k))]

2 + d(fxm(k), fxn(k))
,

[1 + d(fxm(k), gxn(k))]d(gxm(k), fxn(k))

2 + d(gxm(k), gxn(k))
,

d(fxm(k), gxn(k))[1 + d(gxm(k), fxn(k))]

2 + d(gxm(k), gxn(k))

}
→ max

{
ε, 0, 0, ε,

ε2

1 + ε
, 0, 0,

1 + ε

2 + ε
ε,

1 + ε

2 + ε
ε,

1 + ε

2 + ε
ε,

1 + ε

2 + ε
ε

}
= ε as k →∞.



Common fixed points 613

Set

lim inf
k→∞

ψ(M1(xm(k), xn(k))) = β. (2.14)

Then, there exist two subsequences {xm(kj)}j∈N ⊆ {xm(k)}k∈N and

{xn(kj)}j∈N ⊆ {xn(k)}k∈N such that

lim
j→∞

ψ(M1(xm(kj), xn(kj))) = β. (2.15)

Since ψ is lower semi-continuous, it follows from (2.13)-(2.15) that β ≥ ψ(ε) >
0. On the basis of (2.1), (2.13)-(2.15), (ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ3 and Lemma
1.1, we deduce that

0 < φ

(∫ ε

0
ϕ(t)dt

)
= lim sup

j→∞
φ

(∫ d(fxm(kj)
,fxn(kj)

)

0
ϕ(t)dt

)
≤ lim sup

j→∞

[
φ

(∫ M1(xm(kj)
,xn(kj)

)

0
ϕ(t)dt

)
−
∫ ψ(M1(xm(kj)

,xn(kj)
))

0
ϕ(t)dt

]
≤ lim sup

j→∞
φ

(∫ M1(xm(kj)
,xn(kj)

)

0
ϕ(t)dt

)
−lim inf

j→∞

∫ ψ(M1(xm(kj)
,xn(kj)

))

0
ϕ(t)dt

= φ

(∫ ε

0
ϕ(t)dt

)
−
∫ β

0
ϕ(t)dt

≤ φ
(∫ ε

0
ϕ(t)dt

)
−
∫ ψ(ε)

0
ϕ(t)dt

< φ

(∫ ε

0
ϕ(t)dt

)
,

which is a contradiction. Hence {fxn}n∈N0 is a Cauchy sequence. Since g(X)
is complete, it follows that there exist u, v ∈ X with

lim
n→∞

fxn = lim
n→∞

gxn = u = gv. (2.16)

Suppose that fv 6= u. Note that
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M1(v, xn) = max

{
d(gv, gxn), d(fv, gv), d(fxn, gxn),

1

2
[d(fv, gxn) + d(gv, fxn)],

d(fv, gxn)d(gv, fxn)

1 + d(fv, fxn)
,

[1 + d(fv, gv)]d(fxn, gxn)

1 + d(fv, fxn)
,
d(fv, gv)[1 + d(fxn, gxn)]

1 + d(fv, fxn)
,

[1 + d(fv, gxn)]d(gv, fxn)

2 + d(fv, fxn)
,
d(fv, gxn)[1 + d(gv, fxn)]

2 + d(fv, fxn)
,

[1 + d(fv, gxn)]d(gv, fxn)

2 + d(gv, gxn)
,
d(fv, gxn)[1 + d(gv, fxn)]

2 + d(gv, gxn)

}
→ max

{
d(u, u), d(fv, u), d(u, u),

1

2
[d(fv, u) + d(u, u)],

d(fv, u)d(u, u)

1 + d(fv, u)
,
[1 + d(fv, u)]d(u, u)

1 + d(fv, u)
,
d(fv, u)[1 + d(u, u)]

1 + d(fv, u)
,

[1 + d(fv, u)]d(u, u)

2 + d(fv, u)
,
d(fv, u)[1 + d(u, u)]

2 + d(fv, u)
,

[1 + d(fv, u)]d(u, u)

2 + d(u, u)
,
d(fv, u)[1 + d(u, u)]

2 + d(u, u)

}
= max

{
0, d(fv, u), 0,

1

2
d(fv, u), 0, 0,

d(fv, u)

1 + d(fv, u)
,

0,
d(fv, u)

2 + d(fv, u)
, 0,

1

2
d(fv, u)

}
= d(fv, u) as n→∞.

Put

lim inf
n→∞

ψ(M1(v, xn)) = γ.

Obviously, there exists a subsequence {xn(k)}k∈N of {xn}n∈N0 such that

lim
k→∞

ψ(M1(v, xn(k))) = γ ≥ ψ(d(fv, u)) > 0.

In accordance with (2.1), (2.16), (ϕ, φ, ψ) ∈ Φ1×Φ2×Φ3 and Lemma 1.1, we
arrive at
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0 < φ

(∫ d(fv,u)

0
ϕ(t)dt

)
= lim sup

k→∞
φ

(∫ d(fv,fxn(k))

0
ϕ(t)dt

)
≤ lim sup

k→∞

[
φ

(∫ M1(v,xn(k))

0
ϕ(t)dt

)
−
∫ ψ(M1(v,xn(k)))

0
ϕ(t)dt

]
≤ lim sup

k→∞
φ

(∫ M1(v,xn(k))

0
ϕ(t)dt

)
− lim inf

k→∞

∫ ψ(M1(v,xn(k)))

0
ϕ(t)dt

= φ

(∫ d(fv,u)

0
ϕ(t)dt

)
−
∫ γ

0
ϕ(t)dt

≤ φ
(∫ d(fv,u)

0
ϕ(t)dt

)
−
∫ ψ(d(fv,u))

0
ϕ(t)dt

< φ

(∫ d(fv,u)

0
ϕ(t)dt

)
,

which is impossible. Consequently, u = fv = gv.
Note that f and g are weakly compatible. It follows that

fu = f2v = fgv = gfv = g2v = gu. (2.17)

Suppose that u 6= fu. In view of (1.8), (2.1), (2.17) and (ϕ, φ, ψ) ∈ Φ1 ×
Φ2 × Φ3, we give that

M1(v, gv) = max

{
d(gv, g2v), d(fv, gv), d(fgv, g2v),

1

2
[d(fv, g2v) + d(gv, fgv)],

d(fv, g2v)d(gv, fgv)

1 + d(fv, fgv)
,

[1 + d(fv, gv)]d(fgv, g2v)

1 + d(fv, fgv)
,
d(fv, gv)[1 + d(fgv, g2v)]

1 + d(fv, fgv)
,

[1 + d(fv, g2v)]d(gv, fgv)

2 + d(fv, fgv)
,
d(fv, g2v)[1 + d(gv, fgv)]

2 + d(fv, fgv)
,

[1 + d(fv, g2v)]d(gv, fgv)

2 + d(gv, g2v)
,
d(fv, g2v)[1 + d(gv, fgv)]

2 + d(gv, g2v)

}
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= max

{
d(u, fu), d(u, u), d(fu, fu),

1

2
[d(u, fu) + d(u, fu)],

d2(u, fu)

1 + d(u, fu)
,
[1 + d(u, u)]d(fu, fu)

1 + d(u, fu)
,
d(u, u)[1 + d(fu, fu)]

1 + d(u, fu)
,

[1 + d(u, fu)]d(u, fu)

2 + d(u, fu)
,
d(u, fu)[1 + d(u, fu)]

2 + d(u, fu)
,

[1 + d(u, fu)]d(u, fu)

2 + d(u, fu)
,
d(u, fu)[1 + d(u, fu)]

2 + d(u, fu)

}
= d(u, fu)

and

0 < φ

(∫ d(u,fu)

0
ϕ(t)dt

)
= φ

(∫ d(fv,fgv)

0
ϕ(t)dt

)
≤ φ

(∫ M1(v,gv)

0
ϕ(t)dt

)
−
∫ ψ(M1(v,gv))

0
ϕ(t)dt

= φ

(∫ d(u,fu)

0
ϕ(t)dt

)
−
∫ ψ(d(u,fu))

0
ϕ(t)dt

< φ

(∫ d(u,fu)

0
ϕ(t)dt

)
,

which is a contradiction. That is, u = fu = gu. Consequently, f and g have
a common fixed point u ∈ X. This completes the proof. �

Similar to the proof of Theorem 2.1, we have the following results and omit
their proofs.

Theorem 2.2. Let (X, d) be a metric space, f and g : X → X be weakly
compatible mappings satisfying

φ

(∫ d(fx,fy)

0
ϕ(t)dt

)
≤ φ

(∫ M2(x,y)

0
ϕ(t)dt

)
−
∫ ψ(M2(x,y))

0
ϕ(t)dt, ∀x, y ∈ X,

(2.18)
where (ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ3. If f(X) ⊆ g(X), g(X) is complete and
M2(x, y) is defined by (1.9). Then f and g have a unique common fixed point
in X.

Theorem 2.3. Let (X, d) be a metric space, f and g : X → X be weakly
compatible mappings satisfying

φ

(∫ d(fx,fy)

0
ϕ(t)dt

)
≤ φ

(∫ M3(x,y)

0
ϕ(t)dt

)
−
∫ ψ(M3(x,y))

0
ϕ(t)dt, ∀x, y ∈ X,

(2.19)



Common fixed points 617

where (ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ3. If f(X) ⊆ g(X), g(X) is complete and
M3(x, y) is defined by (1.10). Then f and g have a unique common fixed point
in X.

Theorem 2.4. Let (X, d) be a metric space, f and g : X → X be weakly
compatible mappings satisfying

φ

(∫ d(fx,fy)

0
ϕ(t)dt

)
≤ φ

(∫ M4(x,y)

0
ϕ(t)dt

)
−
∫ ψ(M4(x,y))

0
ϕ(t)dt, ∀x, y ∈ X,

(2.20)
where (ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ3. If f(X) ⊆ g(X), g(X) is complete and
M4(x, y) is defined by (1.11). Then f and g have a unique common fixed point
in X.

Remark 2.5. It is clear that Theorem 2.3 extends Theorem 1.5 and Theorem
2.4 generalizes Theorems 1.3 and 1.4. Example 2.1 below shows that Theorems
2.1 and 2.2 differ from Theorems 1.1-1.5, respectively.

Example 2.6. Let X = R be endowed with the Euclidean metric d(x, y) =
|x− y| for all x, y ∈ X. Let f, g : X → X be defined by

fx =

{
4, ∀x ∈ X\{3},
7
2 , x = 3,

gx =
1

4
x2, ∀x ∈ X.

Clearly, f(X) = {72 , 4} ⊂ R+ = g(X), g(X) is complete and f and g are
weakly compatible.

Firstly, we prove that Theorems 1.1 and 1.3 cannot be applied to verify the
existence of fixed points of the mapping f in X. Suppose that there exist
c ∈ [0, 1) and ϕ ∈ Φ1 satisfying the conditions of Theorem 1.1. In virtue of
(1.1), c ∈ [0, 1) and ϕ ∈ Φ1, we get that

0 <

∫ 1
2

0
ϕ(t)dt =

∫ d(f3,f 7
2
)

0
ϕ(t)dt

≤ c
∫ d(3, 7

2
)

0
ϕ(t)dt = c

∫ 1
2

0
ϕ(t)dt <

∫ 1
2

0
ϕ(t)dt,

which is absurd.
Suppose that there exists ϕ ∈ Φ5 satisfying the conditions of Theorem 1.3.

In light of (1.3), we deduce that

1

2
= d

(
f3, f

7

2

)
≤ d
(

3,
7

2

)
− ϕ

(
d

(
3,

7

2

))
=

1

2
− ϕ

(
1

2

)
<

1

2
,

which is a contradiction.
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Now we claim that Theorem 1.2 cannot be used to prove the existence of
common fixed points of the mappings f and g in X. Suppose that there exist
c ∈ [0, 1) and ϕ ∈ Φ1 satisfying the conditions of Theorem 1.2. By means of
(1.2), c ∈ [0, 1) and ϕ ∈ Φ1, we infer that

0 <

∫ 1
2

0
ϕ(t)dt =

∫ d(f3,f
√
7)

0
ϕ(t)dt

≤ c
∫ d(g3,g

√
7)

0
ϕ(t)dt = c

∫ 1
2

0
ϕ(t)dt <

∫ 1
2

0
ϕ(t)dt,

which is impossible.
Next, we certify that Theorems 1.4 and 1.5 cannot be used to prove the

existence of fixed points of the mapping f in X. Suppose that there exists
(ϕ,ψ) ∈ Φ1 × Φ4 satisfying the conditions of Theorems 1.4 and 1.5. On the
basis of (1.4), we deduce that

0 <

∫ 1
2

0
ϕ(t)dt =

∫ d(f3,f 7
2
)

0
ϕ(t)dt

≤
∫ d(3, 7

2
)

0
ϕ(t)dt−

∫ ψ(d(3, 7
2
))

0
ϕ(t)dt

=

∫ 1
2

0
ϕ(t)dt−

∫ ψ( 1
2
)

0
ϕ(t)dt <

∫ 1
2

0
ϕ(t)dt,

which is impossible.
Using (1.5), we have

M

(
3,

7

2

)
= max

{
d

(
3,

7

2

)
, d(3, f3), d

(
7

2
, f

7

2

)
,
1

2

[
d

(
3, f

7

2

)
+ d

(
7

2
, f3

)]}
= max

{
d

(
3,

7

2

)
, d

(
3,

7

2

)
, d

(
7

2
, 4

)
,
1

2

[
d(3, 4) + d

(
7

2
,
7

2

)]}
=

1

2

and

0 <

∫ 1
2

0
ϕ(t)dt =

∫ d(f3,f 7
2
)

0
ϕ(t)dt

≤
∫ M(3, 7

2
)

0
ϕ(t)dt−

∫ ψ(M(3, 7
2
))

0
ϕ(t)dt

=

∫ 1
2

0
ϕ(t)dt−

∫ ψ( 1
2
)

0
ϕ(t)dt <

∫ 1
2

0
ϕ(t)dt,

which is absurd.
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Finally, we prove the existence of common fixed points of the mappings f
and g in X by employing Theorems 2.1 and 2.2, respectively. Define ϕ, φ, ψ :
R+ → R+ by

ϕ(t) = 2t, φ(t) = t, ∀t ∈ R+ and ψ(t) =

{
t, ∀t ∈ [0, 13),
1
3 , ∀t ∈ [13 ,+∞).

It is obvious that (ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ3, ψ(t) ≤ t for each t ∈ R+. Let
x, y ∈ X. In order to collate (2.1) and (2.18), we consider the following three
possible cases.

Case 1. x, y ∈ X\{3} or x = y = 3. It follows that for i ∈ {1, 2}

φ

(∫ d(fx,fy)

0
ϕ(t)dt

)
= 0 ≤ (Mi(x, y))2 − (ψ(Mi(x, y)))2

= φ

(∫ Mi(x,y)

0
ϕ(t)dt

)
−
∫ ψ(Mi(x,y))

0
ϕ(t)dt;

Case 2. x = 3 and y ∈ X\{3}. It follows that

Mi(3, y) ≥ d(f3, g3) = d

(
7

2
,
9

4

)
=

5

4
, i ∈ {1, 2}

and

φ

(∫ d(f3,fy)

0
ϕ(t)dt

)
=

∫ d( 7
2
,4)

0
2tdt =

1

4
<

25

16
− 1

9
=

209

144

= φ

(∫ d( 7
2
, 9
4
)

0
2tdt

)
−
∫ ψ(d( 7

2
, 9
4
))

0
2tdt

≤ φ
(∫ Mi(3,y)

0
ϕ(t)dt

)
−
∫ ψ(Mi(3,y))

0
ϕ(t)dt, i ∈ {1, 2};

Case 3. y = 3 and x ∈ X\{3}. It follows that

Mi(x, 3) ≥ d(f3, g3) = d

(
7

2
,
9

4

)
=

5

4
, i ∈ {1, 2}

and

φ

(∫ d(fx,f3)

0
ϕ(t)dt

)
=

∫ d(4, 7
2
)

0
2tdt =

1

4
<

25

16
− 1

9
=

209

144

= φ

(∫ d( 7
2
, 9
4
)

0
2tdt

)
−
∫ ψ(d( 7

2
, 9
4
))

0
2tdt

≤ φ
(∫ Mi(x,3)

0
ϕ(t)dt

)
−
∫ ψ(Mi(x,3))

0
ϕ(t)dt, i ∈ {1, 2}.



620 T. Cai, X. S. Zhang and L. S. Zhao

Consequently, (2.1) and (2.18) hold. That is, the conditions of Theorems 2.1
and 2.2 are satisfied. Hence, each of Theorems 2.1 and 2.2 guarantees that f
and g have a unique common fixed point 4 ∈ X.
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