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Gamma Knife Radiosurgery for Trigeminal Neuralgia :  
Review and Update
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Accurate diagnosis of trigeminal neuralgia (TN) is the starting point for optimal treatment. Gamma knife radiosurgery (GKRS) is 
currently regarded as one of the first-line treatment options for medically refractory TN. GKRS is a less invasive treatment with a low 
risk of complications than other surgical procedures that provides a favorable pain control Barrow Neurological Institute (BNI) I-IIIb 
rate of >75% at short-term follow-up. Drawbacks of GKRS include the latency period before pain relief and higher recurrence rate 
compared with microvascular decompression. Therefore, repeat treatment is necessary if the initial GKRS was effective but followed 
by recurrence. The concept of dose rate and the biologically effective dose of radiation has been actively studied in radiation 
oncology and is also applied in GKRS for TN to achieve high safety and efficacy by prescribing the optimal dose. Recent progress in 
functional imaging, such as diffusion tensor imaging, enables us to understand the pathophysiology of TN and predict the clinical 
outcome after GKRS. Here, we review TN, GKRS, and recent updates, especially in the concepts of radiation dose, diffusion tensor 
imaging studies, and repeat treatment in GKRS for TN.
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IntroductIon

Facial pain can be caused by various types of neurological 

disorders and the differential diagnosis is mainly based on the 

patient’s description of symptoms. To achieve successful treat-

ment outcomes in trigeminal neuralgia (TN) by determining 

the optimal treatment option, accurate diagnosis is key. In the 

International Classification of Headache Disorders, third edi-

tion, TN is defined as “a disorder characterized by recurrent 

unilateral brief electric shock-like pains, abrupt in onset and 

termination, limited to the distribution of one or more divi-

sions of the trigeminal nerve and triggered by innocuous 

stimuli.” TN is classified into classical, secondary, and idio-

pathic TN. Classical TN is diagnosed when no cause other 

than neurovascular compression is apparent. Secondary TN is 

caused by underlying diseases such as multiple sclerosis, brain 

tumors, and vascular malformation. If magnetic resonance 

imaging (MRI) and electrophysiological tests show no signifi-

cant abnormalities, the condition is considered idiopathic TN. 

A characteristic feature of TN may manifest with persistent 

background facial pain, which is referred to as TN with con-

comitant continuous pain. Previously, the terminology “atypi-

cal” or “type 2” has been used for this type of TN68). We have 

offered surgery (microvascular decompression, MVD), radio-
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surgery, and percutaneous procedures (radiofrequency ther-

mocoagulation, balloon compression, and glycerol rhizotomy) 

to patients with medically refractory TN66). Indications, clini-

cal outcomes, complications, and prognosis of each treatment 

option have been extensively studied and reviewed.

Gamma knife radiosurgery (GKRS) is currently regarded as 

one of the first-line treatment options for medically refractory 

TN since Lars Leksell used it for intractable TN patients in 

195136). GKRS shows a short-term (less than 1 year) pain relief 

rate (with or without medication) of higher than 75% and 

long-term efficacy of approximately 50–60% after 5 years and 

30–40% after 10 years33,40,41,52,65). However, the recurrence rate 

is higher than 20% as demonstrated in multiple studies43,63). At 

a certain point in the clinical pathway, recurrence or treat-

ment failure should be considered, and other treatment op-

tions such as repeat GKRS should be considered. And multiple 

studies on biologically effective dose (BED) have been con-

ducted in the field of radiation oncology over the past 30 

years. Functional imaging, including diffusion tensor imaging 

(DTI), has been applied in various neurological disorders. 

These approaches were also applied in the patients with TN 

after GKRS. Herein, we review GKRS for intractable classical 

or idiopathic TN, focusing on the recently described applica-

tion of dose rate, BED, and DTI and the clinical outcome and 

feasibility of repeat GKRS.

PASt controVErSIES ABout GKrS for tn 
And currEnt conSEnSuS

There were many controversial issues about the optimal 

conditions of GKRS in the early days of GKRS for TN. With 

the accumulation of clinical data, these issues have been clari-

fied, although there are still some questions with no consen-

sus. The optimal dose, target location, number of isocenters, 

and influence of dose rate were well defined in the early days 

of GKRS. In a trial by Lindquist et al.37) in 1991, radiation was 

focused on the gasserian ganglion of the trigeminal nerve and 

was moved posteriorly to the retrogasserian ganglion and root 

entry zone (REZ)33,51-53). A higher rate of pain reduction was 

reported with a higher dose focused on the retrogasserian tar-

get, which is the distal part of the cisternal segment of the tri-

geminal nerve. However, sensory complications occurred 

more frequently the closer the target was to the brainstem. Al-

though the results of the following clinical studies were not al-

ways consistent with the original report, a systemic review 

concluded that a higher dose on the retrogasserian target 

would be associated with more effective pain control and less 

frequent sensory complications compared to other tar-

gets42,47,64,67). A maximum dose of 70–90 Gy has been recom-

mended based on outcomes from multiple retrospective anal-

yses. In general, a higher dose is associated with more prompt 

pain reduction and a higher rate of overall response29,31,32,39,52-54). 

At the same time, a higher dose, particularly applied to the 

brainstem, is associated with a higher rate of trigeminal neu-

ropathy4,8,10,15,19,20,22,23,30,45,48,49,56). Not only the absolute dose but 

also dose rate was suggested as a factor that might influence 

the outcome. The hypothesis was that a higher dose rate 

would result in a stronger biological effect if the absolute dose 

was the same3,5). Recent advances in knowledge related to this 

issue will be discussed in detail in the following part of this 

review. When GKRS using a single isocenter was compared 

with that using two isocenters, no benefit of using multiple 

isocenters was identified in prospective as well as retrospective 

studies2,17,50). Various prognostic factors were investigated. 

Typical pain features of TN, old age, definite vascular com-

pression on MRI, and no history of surgical treatments were 

associated with better outcomes after GKRS10,16,39,41,55). Sensory 

changes after GKRS were associated with better pain relief, 

similar to other percutaneous procedures14,18).

Currently, GKRS is one of the primary treatment options 

for TN and salvage treatment after the failure of other proce-

dures. Although there is no high-level prospective random-

ized controlled trial or comparative study between GKRS and 

other modalities, distinctive features and current roles of 

GKRS can be summarized in the general context of clinical 

practice to support decision making. First, GKRS is the least 

invasive approach among the various treatment modalities ex-

cept for medication. Procedure-related risks (e.g., hemorrhage, 

infection, cerebrospinal f luid leakage, nerve injury, etc.) are 

lower than in any other surgical procedure. Second, the out-

come of GKRS is relatively unaffected by the neurosurgeon or 

individual patient characteristics. Experience or skill of the 

neurosurgeon or characteristics of the patient, such as ana-

tomical variations, have less inf luence on the outcome of 

GKRS than on the outcome of MVD or percutaneous proce-

dures. Third, GKRS is the only treatment modality that is ac-

companied by a latency period before pain relief33). Fourth, 
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sensory complications after GKRS are lower than in various 

percutaneous procedures6,38,64). Fifth, initial pain relief and 

freedom from recurrence are not superior to MVD performed 

by experienced neurosurgeons38). Sixth, durability of the ef-

fectiveness of GKRS is superior to medication or other percu-

taneous procedures. Finally, the outcome of GKRS is not yet 

fully predictable, and further studies need to elucidate these 

hypothesis and questions to make GKRS a better treatment 

modality in TN.

doSE rAtE And BIoLoGIcALLy EffEctIVE 
doSE In GKrS for tn

Cobalt-60, the radiation source of the GKRS, has a half-life 

of 5.26 years and decays spontaneously. The dose rate, which 

is defined as the amount of radiation absorbed by tissues per 

unit time, is reduced by half and the treatment duration is 

doubled after passage of a half-life when the prescription dose 

is constant. In radiation oncology, lower dose rates allow for 

more efficient repair of accumulated sublethal DNA damage 

within both tumors and surrounding normal tissues, which 

could potentially impact both tumor control and risks for tox-

icity in later phases of the treatment. Similarly, the dose rate of 

cobalt-60 was hypothesized to affect pain control in patients 

with TN57). Calibration dose rate (CDR), a physical measure-

ment in a standard phantom, is not the same as the dose rate 

in the tissue of a human patient. Because patient parameters 

depend on the activity of the sources, the collimator used, the 

individual patient geometry, and the degree of sector block-

ing, BED of a given physical radiation dose in tissue will de-

cline as a function of increasing exposure time63).

Few studies have evaluated the impact of CDR or BED on 

clinical outcomes in TN, and the results were inconsistent. 

Balamucki et al.5) studied 239 GKRS procedures in patients 

with TN and found no significant association between dose 

rate or treatment time and pain control rate. Arai et al.3) stud-

ied 165 patients with medically intractable TN who under-

went 80-Gy GKRS using a single 4-mm collimator uniformly. 

The authors divided the patients into a low dose rate (1.21 to 

2.05 Gy/min) and a high dose rate (2.06 to 3.74 Gy/min) group. 

The results were not significantly different in terms of pain 

control or trigeminal dysfunction3). Both studies claimed that 

the patients could consider receiving similar treatment with 

GKRS at any time during the first half-life of a cobalt source. 

However, recent studies have shown opposite results. Lee et 

al.35) suggested that a higher dose rate of >2 Gy/min results in 

more pain control at early follow-up and a lower recurrence 

rate at later follow-up. The authors studied 133 patients with 

TN who were treated with 80-Gy GKRS using a single 4-mm 

isocenter without blocking, and within a dose rate from 1.28–

2.95 Gy/min35). Tuleasca et al.63) suggested that safety and effi-

cacy of GKRS in patients with TN might be achieved by pre-

scribing a specif ic BED. Specif ically, they calculated an 

optimal BED range associated with both long-term pain-free 

incidence of 90% and low risk of hypesthesia development of 

less than 10%. The optimal BED was determined to be 1820–

1962.5 Gy2.47 (the BED was calculated with the tissue specific 

constant of 2.47. The tissue was white matter of central ner-

vous system, and the authors named the unit of BED value of 

GKRS for TN as Gy2.47)
63). A recently published paper by Bar-

zaghi et al.7) also shows that the radiation time and the pre-

scription dose are important factors using the concept of BED 

in terms of long-term pain control. Long-lasting pain control 

was observed with a value of 2.5 Gy/min7). However, the num-

ber of participants in this study was very small, and earlier 

studies showed negative results. Further studies will need to 

elucidate the correlation of dose rate and outcomes and its 

clinical significance.

dtI In tn

DTI can identify brain white matter tracts by tractography 

and offers a non-invasive, in vivo approach to assess axon and 

myelin microstructures using quantitative diffusion parame-

ters. Fractional anisotropy (FA) is the most commonly used 

DTI metric to characterize white matter microstructure and is 

a strong prognostic indicator of clinical progression and treat-

ment response in several pathological disorders. Other DTI 

metrics include radial diffusivity (RD), axial diffusivity (AD), 

and mean diffusivity (MD), which correlate with myelination, 

axonal integrity, and neuroinf lammation, respective-

ly1,44,58-60,62). Recent multisensor, high-spatial-resolution nerve-

specific DTI protocols have enabled detailed visualization of 

both the peripheral and central (brainstem) components of 

the trigeminal nerve pathway9,11,12).

TN studies using DTI have been performed to understand 
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the pathophysiology and to show the clinical correlation of 

DTI. Patients with TN have lower FA and higher AD, RD, and 

MD within the TN-affected, ipsilateral trigeminal nerve 

REZ13,24,34). Trigeminal tractography could detect the radiosur-

gical target where FA values were dropped by 47% focally. 

This finding showed highly focal changes after GKRS. Radial 

but not axial diffusivities increased significantly after GKRS, 

suggesting that this irradiation technique primarily affects 

myelin. The reversal of FA towards baseline values correlated 

with pain recurrence at the long-term follow-up25). Different 

patterns of pre-treatment diffusivities can differentiate re-

sponders from non-responders to treatment. Long-term re-

sponders have unique microstructural abnormalities (lower 

AD and MD) localized to the cisternal segment of the trigemi-

nal nerve, whereas non-responders have abnormalities located 

more centrally (lower FA at REZ, higher AD at the pontine 

segment). This may reflect that the TN-induced structural al-

terations may have functional consequences, resulting in cen-

tral manifestations of TN pain27). FA remained lower at the 

long-term follow-up (24 months after GKRS) in responders. 

Therefore, a decrease in FA was suggested to be potentially 

useful as a biomarker for successful pain relief28).

In a recently published paper, different DTI metrics were 

found across different subtypes of TN (classical, multiple scle-

rosis, solitary pontine lesion) that could differentiate good 

treatment responders and classical TN from other subtypes. 

This clinical response spectrum was associated with the de-

gree of brainstem trigeminal fiber microstructural abnormali-

ties. Specifically, microstructural abnormalities in the affected 

pontine trigeminal fibers (lower FA and higher RD) were 

found in treatment non-responders compared with respond-

ers and controls62). Further studies are needed to strengthen 

the role of the DTI metrics as biomarkers in TN. These bio-

markers may be used in the differential diagnosis of TN, 

which relies solely on the patient’s description and in predict-

ing the prognosis after treatment.

rEPEAt GKrS for tn

Patient characteristics important for determining the opti-

mal treatment option usually do not change when TN relaps-

es. If there is evidence of neurovascular compression and the 

general condition of the patient allows, MVD is considered as 

the first treatment option. However, if the patient is inoperable 

and repeat GKRS is considered as the next treatment option, 

the efficacy and complications are key factors in choosing re-

peat GKRS. Repeat GKRS shows favorable clinical outcomes 

(BNI I–IIIb) in a median of 71.5% (range, 50–95%) of the pa-

tients. Although only minimal facial numbness was reported 

by patients, the occurrence of trigeminal nerve dysfunction 

was increased following repeat GKRS in a median of 42% 

(range, 11–74%) of the patients. The maximum target dose 

was reduced at the second radiation in most institutions by a 

median of 10 Gy (range, 0.9–35)4,8,10,15,19,20,22,23,30,45,48,49,56). The 

trigeminal target at the second GKRS was usually placed more 

distally or proximally to minimize overlap. Tempel et al.61) 

placed the target where the overlap of the two radiosurgical 

volumes was by approximately 50%.

Several studies have tried to identify prognostic factors for 

repeat GKRS in patients with recurrent TN. Age, gender, du-

ration of symptoms prior to initial GKRS, and the interval be-

tween GKRSs have no significant effect on outcomes45). Good 

outcome (BNI I–IIIb) following the first GKRS is a major pre-

dictive factor for favorable response to repeat GKRS22,23,45,46,48). 

Thirty-nine percent of patients with no response to the first 

procedure could still be treated by repeat GKRS46). The facial 

numbness following not only repeat GKRS but also initial 

successful GKRS is another well-known positive predictive 

factor for a good response to repeat GKRS4,22,26,30,48). However, 

a higher cumulative GKRS dose was associated with a greater 

likelihood of sensory sequelae, and the cumulative doses to 

the lateral pontine edge (>44–108.5 Gy) or to the target (115–

130 Gy) were correlated with a newly occurring trigeminal 

sensory loss4,15,26,46). Most of trigeminal nerve dysfunction was 

minimal facial numbness after repeat GKRS; the most signifi-

cant form was anesthesia dolorosa, which occurred in 1.3% of 

the patients from one study22).

An additional third GKRS for recurrent TN after repeat 

GKRS has not been well described. The few reports have been 

limited to case reports or case series with a small number of 

patients. Tempel et al.61) performed a third GKRS in 17 pa-

tients, with a favorable pain control rate (BNI I–IIIb) in 94% 

of the patients initially and 76.4% at a mean follow-up of 22.9 

months (range, 3–60). The outcome of the third GKRS was 

comparable to the outcome of the second GKRS for TN. The 

maximal treatment dose at the third procedure was a mean of 

62.9 Gy (range, 40–80), and the mean cumulative dose was 
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208.5 Gy (range, 150–240). Although three patients (17.6%) 

developed new or had worse trigeminal nerve dysfunction af-

ter the first GKRS and another two patients (11.8%) after the 

second procedure, no patient experienced additional sensory 

disturbances after the third procedure61). A recently published 

study enrolled 22 cases, and favorable pain control rate (BNI 

I–IIIb) was achieved in 81.8% of these cases. The 1, 3, and 

5-year rates of favorable pain relief were 62.7%, 53.8%, and 

40.3%, respectively. The median dose at the third GKRS was 

75 Gy (interquartile range, 75–80), and the median maximal 

radiosurgical dose to the trigeminal nerve was 222.4 Gy (inter-

quartile range, 200.8–232.3). Ten cases (45.5%) experienced 

new or worsening facial numbness, a rate similar to that of the 

second GKRS. Four cases of dry eye and one case of corneal 

abrasion were reported, especially in cases with proximally 

placed shots21). Third GKRS procedure for TN may be a viable 

treatment option in patients who are inoperable. Treatment 

results are similar to those seen in the initial and second 

GKRS, but trigeminal nerve dysfunction occurs at a higher 

rate if the shot is placed proximally along the nerve21,46).

concLuSIonS

GKRS has become one of the well-established primary 

treatment modalities for medically refractory TN and salvage 

treatment for patients following the failure of other treat-

ments. It is the least invasive treatment option, with the high-

est safety profile among various neurosurgical treatment mo-

dalities. Initial pain relief can be achieved in the majority of 

patients, and durability of the effectiveness is favorable com-

pared to other treatments including medication. Meanwhile, 

disadvantages of GKRS include a latency period before pain 

relief and a substantial rate of recurrence at the long-term fol-

low-up. Recent advances in radiation biology and neuroimag-

ing are expected to refine GKRS techniques and improve out-

comes in patients with TN.
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