DOI QR코드

DOI QR Code

메쉬 반사판 안테나의 케이블 네트 형상 설계 및 변형 해석

Form-finding and Deformation Analysis of the Cable Nets for Mesh Reflector Antennas

  • 투고 : 2022.04.07
  • 심사 : 2022.07.01
  • 발행 : 2022.09.01

초록

메쉬 반사판 안테나의 성능은 반사판 표면의 형상 오차에 크게 의존하게 된다. FDM(Force Density Method)을 이용하여 반사판 케이블 네트의 형상설계 연구가 수행되고 있다. 하지만 결정된 형상 일부에 반사판 실효면적의 감소가 발생하고, 케이블의 기하학적 비선형을 고려한 변형 해석은 불가능하다. 본 연구에서는 기하학적 특성을 고려한 케이블 네트 형상설계 방법론을 제시하고 설계된 형상의 실효성을 검증한다. 기하학적 비선형성을 고려한 케이블 네트의 유한요소 모델을 개발한다. 경계조건의 하중 변화에 따른 형상변형 해석을 통하여 케이블 네트 형상 설계변수 특성을 제시하고자 한다.

The performance of antenna reflectors crucially depends on the faceting error of the surface. The force density method (FDM) has been widely used for the form-finding analysis of the cable nets of reflectors. However, after performing form-finding of some cable nets, the effective reflective area will decrease. In addition, nonlinear deformations of the cable can not be achieved by using the FDM. Thus, an effective form-find methodology is proposed in this research. The whole parts of the cable networks are described by the absolute nodal coordinate formulation. The form-finding analysis of the reflector with standard configuration is performed to validate the proposed methodology. The influence of boundary condition changes on the configuration accuracy of the cable net is investigated.

키워드

과제정보

이 연구는 LIG NEX1 산학협력과제 지원으로 연구되었음

참고문헌

  1. Tiber, A. G., "Deployable Tensegrity Structures for Space Applications," Doctoral Thesis, Royal Institute of Technology, Department of Mechanics, Stockholm, Sweden, 2002.
  2. Magenot, C. J., Saniago-Prowald, J. and Klooster, K., "Large Reflector Antenna Working Group Final Report," ESA Technical Note, TEC-EEA, 2010.
  3. Thomson, M. W., "AstroMesh Deployable Reflectors for Ku and Ka-band Commercial Satellites," 20th AIAA International Communication Satellite Systems Conference and Exhibit, 2002, AIAA 2002-2032.
  4. Thomson, M. W., et al. "Light-weight Reflector for Concentrating Radiation," U.S. Patent 5680145, 1997.
  5. Astro Aerospace, "AstroMeshTM Deployable Reflector Data Sheet," Northrop Grumman Space Technology, 2004, DS-409.
  6. Tibert, A. G., "Optimal Design of Tension Truss Antennas," 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Material Conference, April 2003, AIAA 2003-1629.
  7. Otto, F., Tensile Structures; Design, Structure, and Calculation of Buildings of Cables, Nets, and Membranes, MIT Press, 1973.
  8. Schek, H.-J., "The Force Density Method for Form Finding and Computation of General Networks," Computer Methods in Applied Mechanics and Engineering, Vol. 3, 1974, pp. 115~134. https://doi.org/10.1016/0045-7825(74)90045-0
  9. Tuanjie, L., Jie, J., Hanqing, D., Zhanchao, L. and Zuowei, W., "Form-finding Methods for Deployable Mesh Reflector Antennas," Chinese Journal of Aeronautics, Vol. 26, No. 5, 2013, pp. 1276~1282. https://doi.org/10.1016/j.cja.2013.04.062
  10. Li, P., Liu, C., Tian, Q., Hu, H. and Song, Y., "Dynamics of a Deployable Mesh Reflector of Satellite Antenna: Form-Finding and Modal Analysis," Journal of Computational and Nonlinear Dynamics, Vol. 11, 2016, 041017. https://doi.org/10.1115/1.4033440
  11. Yang, B., Shi, H., Thomson, M. and Fang, H., "Optimal Design of Initial Surface Profile of Deployable Mesh Reflectors Via Static Modeling and Quadratic Programming," 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, May 2009, AIAA 2009-2173.
  12. Shi, H., Yuan, S. and Yang, B., "New Methodology of Surface Mesh Geometry Design for Deployable Mesh Reflectors," Journal of Spacecraft and Rockets, Vol. 55, No. 2, 2018, pp. 266~281. https://doi.org/10.2514/1.A33867
  13. Jennings, A., "Frame Analysis including of Change of Geometry," Journal of the Structural Division, Vol. 94, No. ST3, Paper 5839, 1968.
  14. Bathe, K. J., Finite Element Procedure in Engineering Analysis, Prentice-Hall, 1983.
  15. Crisfield, M. A., Non-linear Finite Element Analysis of Solids and Structures, Wiley, 1997.
  16. Irvine, H. M., Cable Structures, MIT Press, 1981, pp. 47~57.