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We have many advanced automatic ground-to- 

ground, ground-to-air, and air-to-air weapon systems, 

but, conventional soldier on ground with automatic 

guns in their hands are still very important in 

modern day warfare. Human-soldiers as well as 

robotic-soldiers on ground can be assisted with good 

quality sensor suite along with efficient firing lane 

alignment algorithms so they can hit hostile targets 

with accuracy. For these algorithms to work, we 

also need robust error compensation techniques to 

handle sensor error in our sensor suite. One of the 

important error to consider in attitude reference 

systems are biases in accelerometers and gyroscopes 

which accumulate with time in dynamic environments. 
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This study investigates the use of movable calibration target for gyroscopic and accelerometer 

bias compensation of inertial measurement units for firing lane alignment. Calibration source is 

detected with the help of vision sensor and its information in fused with other sensors on launcher 

for error correction. An algorithm is proposed and tested in simulation. It has been shown that it 

is possible to compensate sensor biases in firing launcher in few seconds by accurately estimating 

the location of calibration target in inertial frame of reference.

본 논문은 사격 차선 정렬을 위하여 움직일 수 있는 교정 대상을 이용해 각속도계와 가속도계의 편차를 

보상하는 방법을 다룬다 교정 대상에 대한 정보는 영상 센서를 통해 획득하며 이를 이용해 발사장치에 . 
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히 관성 좌표계에서 교정 대상에 대한 위치 정보를 정확하게 획득함으로써 발사장치의 관성 센서 편차를 

효과적으로 보상할 수 있음을 보인다.
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Output performance of most inertial reference 

systems suffer from continuous degradation of bias 

errors in accelerometer and gyroscopic measure- 

ments. There are many classical approaches to 

compensate these errors, dated back to 1930s. One 

approach utilized in early attitude reference systems 

was attitude error elimination by vehicle acceleration 

data provided by external means[1,2]. External data 

was compared with onboard sensor data and the 

difference was contributed to gravity projections 

proportional to the platform tilt errors. Based upon 

these errors, platform gyroscopes were recalibrated 

to compensate bias errors. This continuous correction 

procedure prevented the accumulation of attitude 

errors at the output of inertial measurement system, 

but it did not directly targeted the compensation of 

bias errors at the sensor level. That correction came 

with the modern studies of Kalman Filter.

Kalman filtering[5] is usually preferred as a more 

general and powerful approach to aided inertial 

system design as it uses a series of erroneous 

observations over time to produce estimates of 

unknown variables. The state vector to be estimated 

is composed of output errors and then, if necessary, 

is augmented by inertial sensor biases[6,7]. Thus the 

phases of attitude correction and sensor error 

estimation are replaced by a single update procedure 

of the Kalman filter. Our system is comprised for a 

solder wearing smart helmet, carrying a launcher, 

having a calibration target and aiming a hostile 

target. We assumes that a soldier carries very 

accurate GPS receiver and other inertial measure- 

ment sensors in its helmet. Soldier also carries a 

firing launcher with its own sensors but sensors on 

launcher are relatively imprecise as compared to 

helmet sensors. We have also assumed a movable 

calibration target which can be perceived by vision 

sensors available on soldier helmet as well as 

launcher. Further sensor level details are provided in 

Fig. 2. We propose a sensor fusion algorithm which 

correct launcher’s sensor bias while using soldier’s 

helmet sensor suite and calibration target. Our 

particular contribution is proposing an algorithm 

which calibrate launcher sensors with the help of a 

calibration target where target’s own location is 

unknown. Exact location of calibration target is found 

by another estimation scheme in which helmet sensor 

suite is involved. Just because of taking help from 

helmet sensor suite, our calibration target need not 

to be fixed in some space. Instead, our calibration 

target can be mobile and it can move along with 

launcher in the battle field. We show that a launcher 

can provide very accurate attitude information while 

carrying relatively imprecise sensors prone to biases 

and without any need for dedicated GPS receiver.

After introduction section, this paper presents 

system overview and define frames of reference in 

section II. System overview is followed by a section 

III which describes soldier attitude determination and 

localization in inertial frame of reference. This 

section also describes a strategy for the localization 

of calibration target in inertial frame of reference. 

We then present launcher error compensation 

algorithm in section IV. Results and Discussion 

section is presented in section V.

Our system consists of a mobile soldier carrying a 

smart helmet and a firing launcher. Soldier’s helmet 

contains highly accurate sensor suite which includes 

GPS Receiver, three axis accelerometers, three axis 

gyroscopes and three axis magnetometers. It also 

contains an accurate RGBD stereo depth camera on 　

top of its helmet. Soldier’s body frame of reference 

is fixed to soldier’s helmet. All the sensors on 

soldier’s helmet are assumed to be fixed and aligned 

with soldier body frame of reference. Launcher 

carried by soldier also contains its own sensor suite 

which is comprised of three axis accelerometers, 

three axis gyroscopes, three axis magnetometers and 

a camera. Launcher does not contain any GPS 

receiver of its own and will rely primarily on 

Soldier’s GPS receiver. We assume that sensor suite 

fixed on top of launcher is not as accurate as 

helmet's sensor suite. Accelerometers and gyroscopes 

on launcher have their own biases and their errors 

accumulate with time. Moreover, launcher have to 

face more dynamic environment in its operations 

which can further deteriorate attitude information 

acquired from launcher’s sensor suite. Therefore, 

it’s important to periodically compensate bias errors 

in launchers for accurate attitude referencing. We 

assume an external calibration target as reference 

that can be perceived by the vision sensors on both 

helmet and launcher. That calibration target is used 

to compensate launcher bias errors. Though 

calibration target is assumed movable, it should be 

static at the time of calibration. For this vision aided 
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inertial bias compensation to work, we need to 

define some frames of references.

Our system primarily use three frames of 

references named navigation reference frame (N), 

solder reference frame (B) and launcher reference 

frame (L). Navigational frame of reference is simple 

North-East-Down frame of reference where x-axis 

points towards north, y-axis points towards east, 

and z-axis completes right hand rule. Navigational 

frame is assumed inertial frame. Soldier’s frame of 

reference is fixed with soldier’s helmet. We have 

further assumed that all sensors on top of soldier’s 

helmet are fixed and alighted with soldier’s frame of 

reference (B). Therefore, there is no misalignment 

between helmet’s sensor axes and soldier’s helmet 

frame of reference and this is true for all sensors 

on top of helmet. Similarly, launcher’s frame of 

reference (L) is fixed with launcher body and all 

sensor’s on launcher are perfectly aligned with 

launcher’s frame of reference (L). These frame of 

references are depicted in Fig. 1.

Lastly, we have two targets in our system named 

hostile target and calibration target. Hostile target 

needs to be aimed by launcher. Location of hostile 

target is assumed to be known in navigational frame 

of reference. To aim a static hostile target with 

accuracy, we need to accurately compensate inertial 

sensor bias errors with the help of efficient sensor 

fusion algorithm so we may achieve accurate attitude 

referencing. For that inertial sensor bias compensation 

we have an external calibration target. Moreover, 

both soldier’s helmet and soldier’s launcher must be 

static with calibration target in their field of view at 

the time of correction. Once bias correction is made, 

calibration target, soldier’s helmet, and launcher can 

move for post-bias-correction firing lane alignment.

Flow of the algorithm is shown in Fig. 2. we start 

with attitude and location estimation of soldier’s 

helmet in navigational frame of reference. we use 

accelerometers, gyroscopes, magnetometers and GPS 

receiver onboard the helmet for this task. Later we 

localize our calibration target with the help of RGBD 

camera on the helmet. we localize our calibartion 

target in both soldiers frame and navigation frame 

of reference. Once we successfully localize our 

calibration target in navigation frame, our main task 

of calibrating launcher starts. we use launcher’s 

onboard camera to measure calibration target location 

and fuse that information with other sensors onboard 

the launcer with the help of Extended Kalman Filter. 

This helps us compensate launcher’s sensor biases 

and aim the hostile target correctly.

Before we can make any compensation for bias 

errors of launcher sensors, we need to accurately 

know the exact location of calibration target in 

navigation frame of reference because calibration 

target serves as an external reference for launcher’s 

bias error correction. Calibration target has no 

sensor of its own and it is considered movable with 

respect to soldier and launcher (but immovable at 

the time of correction). Even though it’s not 

possible to directly localize calibration target in 

navigational frame, we may localize calibration target 
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indirectly with the help of soldier’s helmet in 

navigational frame. We assume that our soldier 

carries an accurate depth sensor on its helmet which 

can be used to localize calibration target in soldier’s 

frame of reference (B). On the other hand, soldier 

carry all necessary sensors on its helmet for its own 

localization as well as attitude determination in 

navigational frame of reference (N). Thus calibration 

target localization in soldier’s frame of reference 

(B) can be transformed in navigational frame (N) 

with the help of soldier’s sensor suite. Therefore we 

first need to localize and determine attitude of 

soldier’s helmet.

In soldier attitude and localization step we need to 

find the attitude and position of soldier in navigational 

frame of reference (N). Navigational frame of 

reference is North-East-Down (NED) frame in our 

case. We make use of GPS, accelerometers, gyroscopes 

and magnetometer sensors in soldier’s helmet to 

localize solder in navigational frame. Process starts 

with the definition of state transition matrix followed 

by process and measurement model definitions. 

Soldier attitude and localization is achieved by sensor 

fusion using Extended Kalman Filter[8,9].

The state transition models form the core of the 

Extended Kalman Filter (EKF) prediction stage by 

performing system propagation from current time- 

step to the next time-step. State transition model 

uses high quality sensor inputs at current time-step 

to propagate system states in future. Process noise 

vectors relating current state to sensor noise are 

also defined in state transition matrices. These state 

matrices enable the computation of process covariance 

matrix, Q, and the process Jacobian, F. Both process 

covariance matrix, Q, and the process Jacobian, F, 

are used further in Extended Kalman Filter to 

propagate system covariance, P, from current 

time-step to future time-step. Our state vector is 

comprised of soldier position, soldier velocity, attitude 

quaternion, accelerometer bias and gyroscopes bias 

(1). Propagated system state is a function of 

system’s previous state, system input and system 

process noise vector as shown in Equation (2).

(1)

 



 (2)

where   is the system state-vector,  is the 

input-vector (consisting of sensor signals) and  

is the process noise vector. Process noise vector is 

a function of individual sensor noise vectors 

corresponding to the angular-rate and accelerometer 

biases. Expanded view of underling computations in 

state-transition vector   is shown in Equation (3) 

[11].
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(3)

As the state-transition model is nonlinear and 

difficult to compute, the state-transition vector 

cannot be directly used to propagate the covariance 

matrix, P, in Extended Kalman Filters. Therefore we 

linearize state-transition vector by Taylor-series 

expansion. Linearized solution is referred to as 

process Jacobian. Process Jacobian, F, along with 

process noise covariance matrix, Q, can be used to 

propagate covariance matrix, P, forward in time as 

shown in Equation (6). Process Jacobian, F, and 

process noise matrix, Q, are shown in Equations (4) 

and (5) respectively. The process covariance matrix 

serves the purpose of weighting matrix for the 

system process. It relates the covariance between 

individual elements of each process-noise vector 

[11].

 
 

 


(4)
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  ×  

(5)

         
  (6)
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We need two kinds of measurements for Extended 

Kalman Filtering. First measurement is sensor based 

measurement  while the other measurement  is 

taken with the measurement model (7), (8). A 

measurement model relates the system states to the 

system measurements. It is possible to choose 

among various measurement models for a given 

EKF implementation. Our measurement vector  is 

comprised of position, velocity, and attitude 

information. Out of these three measurement values, 

only velocity information is directly available through 

our GPS receiver. Other two measurements need to 

be derived from available sensor data. On the other 

hand, our measurement model vector  have position 

and velocity information directly available from 

system state matrix. Attitude (roll, pitch and yaw) 

information in measurement model may be derived 

from Equation (9)-(11).
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(7)
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⊥
  atan 

 
 

 
 (9)

⊥
 asin  (10)

⊥
  atan 

 
 

 
 (11)

Extended Kalman Filter operates in two steps 

namely prediction step and update step. The first 

step in EKF is prediction step in which system state 

vector is propagated in time along with system 

covariance estimate using sensor readings. Equations 

(12), (13) are used for update step where P, F, and 

Q represent process covariance, process Jacobian and 

process noise covariance respectively. 

  
 (12)

 
  (13)

The second step in EKF is update step in which 

we update our estimate considering difference between 

measurement vector  and measurement model . 

This difference is referred to as measurement error 

or innovation error (14).

 
 

 (14)

After we are done with state estimation, covariance 

prediction, and innovation error calculation, we can 

easily estimate state vector using Equations (15)- 

(20) Update step makes use of measurement 

Jacobian, H, which is obtained by taking partial 

derivatives of measurement model with respect to 

system states. Matrices ‘S’ and ‘K’ are called 

innovation covariance and Kalman gains respectively.

 
 (15)

 


 (16)

∆ 
 (17)

 
 ∆ (18)

∆  (19)

  ∆ (20)

Once we localize soldier in navigational frame of 

reference, we may also localize calibration target in 

navigational frame of reference as we assume that 

our soldier has accurate RGBD sensor capable of 

locating calibration target. Since we have assumed 

that our system contain accurate RGBD sensor, we 

don't need a separate filter for noise cancellation. But 

if someone assumes a noisy RGBD sensor, another 

EKF may again be applied for accurate localization 

of calibration target in navigational frame. It should 

be noted that state vector for calibration target’s 

location estimation is different from state vector for 

soldier localization in navigational NED frame of 

reference (N).

Once we determine the calibration target location 

in navigation frame of reference using sensor suite 

available on robot’s helmet, we can use that target 

location to be detected with the help of vision 

sensor on launcher and fuse that information with 

other sensors on board the launcher. Launcher is 
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not supposed to have a GPS receiver but it is 

assumed to be in closed proximity of soldier’s 

helmet. Moreover, we assume that calibration target 

in not in close proximity of launcher. Because of 

these assumptions we can use the GPS measure- 

ments from robot/soldier’s helmet and fuse that 

information with other sensors available on launcher. 

Launcher state vector can be represented as 

















 

. Subscript   in state vector 

represents values related to launcher. This state- 

vector is different from state-vectors in section 3.1 

because it represents states of the launcher instead 

of helmet. Methodology for sensor fusion from IMU 

and GPS is same as described for the earlier case 

of helmet while we need to use different 

measurement model. This time we shall use 

calibration target’s visual information to compensate 

gyro bias and accelerometer bias in launcher frame 

of reference.

(21)

State vector in Equation (21) is comprised of 

launcher position in navigational frame (N), launcher 

velocity in navigational frame, unit quaternion between 

launcher frame (L) and navigational frame, gyroscopic 

biases and accelerometer biases represented in 

navigational frames of references.

While describing sensor error compensation for 

soldiers helmet, we went through State transition, 

process model, measurement model, and Extended 

Kalman Filtering Steps. When dealing with launchers 

error compensation, we note that steps are somewhat 

similar but major difference lies in measurement 

model. Measurement model for soldier’s attitude and 

localization contained only position, velocity and Euler 

angles of soldier’s helmet while measurement model 
 in launcher’s error compensation algorithm 

contains an extra element 


. Vector 


 points 

from the camera’s optical center position to the 3D 

point location of calibration target, expressed in 

navigational frame of reference (N). Sensor mea- 

surement vector  along with measurement vector 

from model  for launcher’s error compensation 

algorithm is presented in Equations (22), (23).

 

































(22)

 
































(23)

  To predict vector 


 we use standard pinhole 

camera model which makes a visual measurement of 

a calibration target. By assuming simple pinhole 

camera model, we can use standard equation of 

pinhole camera to find a vector from launcher’s 

camera optical center position to the 3D point 

location of calibration target. Since we know the 

locations of both camera optical center and 

calibration target, finding this vector is a simple 

algebraic operation. Once we calculate 


 vector 

and measure similar vector through real camera, we 

can simply find the difference between these two 

vectors to input in Kalman Filter’s equations. Hence, 

known location of calibration target can be used as 

an external reference to compensate launcher’s biases. 

We have assumed a standard pinhole camera 

which makes a visual measurement   of a 

calibration target. This measurement is a sum of 

true measurement of pixel location for calibration 

target in image frame and Gaussian white noise.

     (24)

where      represents the true position in 

the image plane of the projection of calibration 

target.  and  are distorted pixel coordinates. 

The term  represents the uncertainty associated 

with visual measurements and is modeled by a 

Gaussian white noise with power spectral density 

(PSD) 
 . Considering a central projection camera 

model, the image plane is located in front of the 

camera’s origin upon which a non-inverted image is 

formed. The camera frame is assumed right-handed 
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with the z-axis pointing to the field of view. The 

ℝ⇒ℝ projection of a 3D calibration target point 

located at    to the image plane    

is defined by Equation (25), (26) where   and  

are the coordinates of the image point  expressed 

in pixels units and ′′′ are coordinates of 

calibration target point in launcher’s frame of 

reference.   is focal length of camera, while  

represent camera center-pixel location.  also 

represent origin of camera frame of reference (C). 

Point  is the same 3D point , but expressed in 

the camera frame. Inversely, a directional vector 

  
 

 
  can be computed from the image 

point coordinates  and  using Equation (27).

  ′

′
  ′

′
(25)









′

′
′












  

  
  

 (26)





 






 


  
  (27)

The vector  points from the camera’s optical 

center position to the 3D point location of calibration 

target.  can be expressed in the navigation frame 

by 


 , where  is the camera to 

navigation rotation matrix. Similarly we may obtain 




 simply by applying transformation  to 

 , 

where 
  is measured pixel location of calibration 

target from camera fixed on top of launcher.

Operations of EKF for launcher error compensation 

are again similar to that of soldier’s attitude and 

localization algorithm with a single difference in 

measurement Jacobian matrix  . Now the measure- 

ment Jacobian  is computed by taking the partial 

derivatives of launcher measurement model in 

Equation (23) with respect to launcher state vector 

elements. Once we calculate the measurement 

Jacobian, rest of process is same. We first apply 

filter prediction step using Equations (12), (13). We 

then calculate innovation error using Equation (14) 

while using measurement vector and measurement 

model from Equations (22) and (23) respectively. 

We then apply filter update step using Equations 

(15)-(20).

As discussed previously, the aim of this research 

work is to evaluate a working algorithm for firing 

lane alignment to help both human and robotic 

soldiers in battle field to aim accurately at hostile 

targets. Location of the hostile targets is assumed to 

be known beforehand in navigational frame of 

reference. As shown in Fig. 2, we first need to 

estimate location and attitude of helmet in 

navigational frame. Secondly, we need to localize 

calibration target and thirdly, we compensate launcher 

bias errors to aim hostile targets accurately. Our 

simulation work deal with first and third step only in 

which we try to compensate helmet’s biases as well 

as launcher’s biases only. In order to achieve this 

goal, our simulations used open source data set 

provided by Karlsruhe Institute of Technology 

(KITTI)[10]. This dataset provides 3D GPS/IMU 

data comprising location, speed, acceleration and 

meta-information acquired by sensors fixed on top 

of moving platform. This dataset provides both raw 

and processed data. We also added additional 

Gaussian noise in aforementioned dataset to check 

the validity of our algorithms. Thus processed data 

from KITTI dataset is assumed a ground truth and 

we have added a bias into this data. Our bias is 

modeled as a Gaussian random walk model consisting 

of a constant offset plus a random drift. We 

processed noisy data from our algorithm and 

evaluated it against noiseless data. We prepared two 

different versions of noisy data for each “soldier’s 

attitude and localization algorithm” and “launcher 

error compensation algorithm”.

In first case, we prepared noisy data for soldier’s 

helmet. This dataset included GPS measurements as 

well as inertial measurement unit’s (IMU) data. We 

processed this data from sensor fusion algorithm to 

see if we can correctly estimate biases for both 

accelerometers and gyroscopes. Since we had 

assumed that we have very accurate high quality 

sensors on soldier’s helmet, bias errors were 

assumed very small. We assumed a measurement 

error with 0.00005rad/sec standard deviation of 

gyroscopic bias and 0.00001rad/sec of gyroscopic 

drift along all three axis. Similarly we assumed a 

measurement error with 0.00005m/sec2 standard 

deviation of accelerometer bias and 0.00001m/sec2 of 

accelerometer drift along all three axis. We observed 

in all cases that we were able to estimate and 

correct biases within one second and this bias 
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correction persisted over a long period of time. Fig. 

3 illustrates true and estimated biases in soldier’s 

helmet gyroscope. Similarly Fig. 4 illustrates true 

and estimated biases in soldier's helmet accelero- 

meters. States , , and  correspond to 

gyroscopic bias along x-axis, y-axis and z-axis 

respectively in rad/sec, while states  , , and 

 corresponds to accelerometer bias along x, y, and 

z axis respectively in m/sec2. We can see that 

estimated values of gyroscopic bias as well as 

accelerometer bias are pretty close to their true 

values of biases in Fig. 3 and Fig. 4. Once we 

compensate these estimated values of biases from 

measured values, we may get corrected values of 

orientation and location from our sensor suite. Soldier 

orientation and localization after bias compensation 

are presented in Fig. 5 and Fig. 6 respectively.

  

  

In the second case, we prepared noisy data for 

launcher. Both accelerometer and gyroscopic measure- 

ments are assumed to have measurement noise 

modeled as Gaussian and biases modeled as Gaussian 

random walks. Though launcher dataset included 

accelerometer, gyroscopic and magnetometer mea- 

surements, it did not include GPS measurement. 

Launcher used GPS measurements from soldier’s 

helmet for its error compensations because of its 

close proximity with soldier. Amount of deliberate 

error induced in launcher’s measurement dataset 

was considerably more than that of soldier-helmet’s 

measurements presented before. It is evident from 

results in Fig. 6 that gyroscopic biases along all 

axes are estimated quite effectively within few 

seconds. States , , and  in Fig. 7 correspond 

to gyroscopic bias along x, y, and z axis respectively 

with units in rad/sec. Though it takes around four 



사격 차선 정렬을 위한 영상 기반의 관성 센서 편차 보상

  

senconds to correctly estimate bias along z-axis for 

our proposed algorithm, estimation of biases along 

other two axis takes below one second.

Lastly, we present error plots for gyro bias shown 

in Fig. 8. along with 2-sigma of bias error. we may 

see from plots in Fig. 8. that error as well as its 

2-sigma values reduce with time.
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