DOI QR코드

DOI QR Code

구리 함유 폐에칭액의 시멘테이션 반응 시 구리 회수에 미치는 초음파 에너지의 영향

Effect on Copper Recovery by Ultrasonic Energy during Cementation Reaction from Copper-contained Waste Etching Solution

  • 김보람 (고등기술연구원 신소재공정센터) ;
  • 장대환 (고등기술연구원 신소재공정센터) ;
  • 김대원 (고등기술연구원 신소재공정센터) ;
  • 채병만 ((주)케이엠씨) ;
  • 이상우 ((주)케이엠씨)
  • Kim, Boram (Advanced Materials and Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Jang, Dae-Hwan (Advanced Materials and Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Kim, Dae-Weon (Advanced Materials and Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Chae, Byung-Man (KMC Co., LTD) ;
  • Lee, Sang-Woo (KMC Co., LTD)
  • 투고 : 2022.07.27
  • 심사 : 2022.08.01
  • 발행 : 2022.08.31

초록

본 연구에서는 약 3.5% 구리 함유 폐에칭액으로부터 구리를 회수하기 위한 철 샘플에 따른 시멘테이션 반응 시 초음파 에너지 인가에 의한 반응 속도와 구리 회수율에 미치는 영향을 조사하였다. 그 결과 단순 교반 공정에 비해 시멘테이션 반응이 효과적으로 일어나 같은 시간 대비 높은 구리 회수율을 나타냈다. 단순 교반과 초음파에너지를 가하였을 때를 비교해보면, 25분 반응에 따라 철 샘플 형태가 plate를 사용하였을 때, 약 9.5%가 56.6%로 향상되었으며, chip은 약 14.0%에서 46.1%, powder는 약 41.9%에서 77.2%로 증가하였다. 이는 시멘테이션 반응으로 생성되어 철 표면을 덮고 있던 구리가 탈착되며 연속반응이 유도되었고, 구리 회수율은 약 2배에서 6배까지 증가하였으며, 회수된 구리의 입자 크기 또한 감소하는 경향을 확인할 수 있었다.

In this study, effects of ultrasonic energy on the cementation reaction and copper recovery rate were investigated for different types of iron samples, such as plate, chip, and powder, for recovering copper from waste etchant, which contained ~3.5% copper. The cementation reaction using the ultrasonic energy was more effective than the simple stirring reaction, with the former exhibiting a high copper recovery rate than the latter for the same time interval. When cementation was performed for 25 min with ultrasonic treatment, rather than simple stirring, the copper recovery rate of the plate, chip, and powder improved from 7.0% to 12.0%, 14.0% to 46.1%, and 41.9% to 77.2%, respectively. Therefore, the use of ultrasonic energy could detach the copper recovered by the cementation reaction from the surface of the iron samples, thereby increasing the copper recovery rate. Owing to the use of ultrasonic energy, the copper recovery rate increased by 2-6 times, and the recovered copper exhibited a decreased particle size compared to that obtained via simple stirring.

키워드

과제정보

본 연구는 2020년도 중소벤처기업부의 재원으로 중소기업기술정보진흥원(TIPA)의 지원을 받아 수행한 연구과제입니다(중소기업기술혁신개발사업 No. S2962230).

참고문헌

  1. Dean, J. G., Bosqui, F. L., and Lanouette, K. H., 1972 : Removing heavy metals from waste water, Environmental Science &Technology, 6(6), pp.518-522. https://doi.org/10.1021/es60065a006
  2. Filice, S., D'Angelo, D., Scarangella, A., et al., 2017 : Highly effective and reusable sulfonated pentablock copolymer nanocomposites for water purification applications, RSC Adv., 7, pp.45521-45534. https://doi.org/10.1039/C7RA08000J
  3. Molinari, R., Poerio, T., and Argurio, P., 2008 : Selective separation of copper(II) and nickel(II) from aqueous media using the complexation-ultrafiltration process, Chemosphere, 70, pp.341-348. https://doi.org/10.1016/j.chemosphere.2007.07.041
  4. Azarudeen, R. S., Ahamed, M. A. R., Subha, R., et al., 2014 : Heavy and toxic metal ion removal by a novel polymeric ion-exchanger: Synthesis, characterization, kinetics and equilibrium studies, J. Chem. Technol. Biotechnol., 90, pp.2170-2179. https://doi.org/10.1002/jctb.4528
  5. Moon, H. S., Song, S. J., Tran, T. T., et al., 2022 : Separation of Co (II), Ni (II), and Cu (II) from Sulfuric Acid Solution by Solvent Extraction, Resources Recycling, 31(1), pp.21-28. https://doi.org/10.7844/KIRR.2022.31.1.21
  6. Li, X., Zhang, Q., and Yang, B., 2020 : Co-precipitation with CaCO3 to remove heavy metals and significantly reduce the moisture content of filter residue, Chemosphere, 239, pp.124660.
  7. Vamvakidis, K., Kostitsi, T. M., Makridis, A., et al., 2020 : Diverse surface chemistry of cobalt ferrite nanoparticles to optimize copper (II) removal from aqueous media, Materials, 13(7), pp. 1537.
  8. Walsh, F. C., and Reade, G. W., 1994 : Electrochemical techniques for the treatment of dilute metal-ion solutions, Studies in Environmental Science, 59, pp.3-44. https://doi.org/10.1016/S0166-1116(08)70546-6
  9. Kim, S. E., Lee, S. L., Kang, S. C., et al., 2012 : A Study on Electrochemical Regeneration of Waste Iron-chloride Etchant and Copper Recovery, Clean Technology, 18(2), pp.183-190. https://doi.org/10.7464/KSCT.2012.18.2.183
  10. Lin, J., Huang, J., Wang, J., et al., 2021 : High-performance porous anion exchange membranes for efficient acid recovery from acidic wastewater by diffusion dialysis, Journal of Membrane Science, 624, pp.119116.
  11. Regel-Rosocka, M., 2010 : A review on methods of regeneration of spent pickling solutions from steel processing, Journal of Hazardous Materials, 177(1-3), pp.57-69. https://doi.org/10.1016/j.jhazmat.2009.12.043
  12. Kim, B. R., Jang, D. H., and Kim, D. W., 2021 : A Study on the Cementation Reaction of Copper-containing Waste Etching Solution to the Shape of Iron Samples, Clean Technology, 27(3), pp.240-246. https://doi.org/10.7464/KSCT.2021.27.3.240
  13. Kim, S., Kim, Y. J., Seo, J. H., et al., 2021 : Effect of Ultrasound Irradiation during Cementation Process for Recovery of Iridium, Resources Recycling, 30(6), pp.61-67. https://doi.org/10.7844/KIRR.2021.30.6.61
  14. Kim, D., Kim, Y., and Lee, J., 2010 : Decomposition of ethylene vinyl acetate by using ultrasonic treatment, Journal of the Korean Society of Mineral and Energy Resources Engineers, 47(5), pp.647-652.