DOI QR코드

DOI QR Code

Analysis of the Efficient Clutter Removal Method Using an Array Antenna in a Local Weather Radar

국지적 기상 레이다에서의 배열 안테나를 이용한 효율적인 클러터 제거 방법 분석

  • Lee, Jonggil (Department of Information and Telecommunication Engineering, Incheon National University)
  • Received : 2022.06.29
  • Accepted : 2022.07.19
  • Published : 2022.08.31

Abstract

As the likelihood of occurrence of the localized microbursts or severe flooding is increased due to the unusual weather changes, it is the very urgent problem to detect these weather hazards with a local weather radar. For a local weather radar of this purpose, it is essential to detect the low altitude and the fast varying weather conditions. Therefore, the very fast update of the weather information and the efficient clutter removal is very important. To achieve this goal, the appropriate method should be applied which does not need the mechanical elevation scanning and has the capability of the efficient clutter removal. Therefore, in this paper, the usefulness of the implementation of elevational filter banks with the spatial FFT algorithm was analyzed and investigated using a simple array antenna. It is shown that the suggested method can be used for both the minimization of the ground clutter and the fast update of weather information.

최근 국지적인 돌풍이나 호우 등의 기상이변에 의한 재난이 빈번히 발생함에 따라 국지적인 기상 레이다를 활용한 기상위험 현상의 탐지가 매우 시급한 문제이다. 이러한 목적의 기상 레이다는 저고도 탐지 및 급변하는 기상상황의 빠른 탐지가 필수적이다. 따라서 강력한 지표면 클러터를 효율적으로 제거하면서도 기상 정보의 빠른 업데이트가 매우 중요하다. 그러므로 고각별 탐지를 위한 기계적인 안테나 조정이 별도로 필요하지 않으면서도 지표면 클러터의 효율적인 제거도 가능한 적절한 방법을 적용하여야 할 것이다. 따라서 본 논문에서는 간단한 구조의 배열 안테나를 이용한 효율적인 공간 FFT 알고리즘을 통한 고각 필터뱅크 구현 방법에 대한 유용성을 분석하고 고찰하였다. 이러한 방법을 사용하면 탐지 과정에서의 지표면 클러터에 의한 영향을 최소화 하면서도 빠른 기상정보의 업데이트가 가능함을 보였다.

Keywords

Acknowledgement

This work was supported by Incheon National University Research Grant in 2021.

References

  1. J. A. Ortiz, J. L. Salazar-Cerreno, J. D. Diaz, R. M. Lebron, N. A. Aboserwal, and L. Jeon, "Low-Cost CMOS Active Array Solution for Highly Dense X-Band Weather Radar Network," IEEE Transactions on Antennas and Propagation, vol. 68, no. 7, pp. 5421-5430, Jul. 2020. https://doi.org/10.1109/TAP.2019.2947135
  2. A. D. Byrd, R. D. Palmer, and C. J. Fulton, "Development of a Low-Cost Multistatic Passive Weather Radar Network," IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 4, pp. 2796-2808, Apr. 2020. https://doi.org/10.1109/TGRS.2019.2955606
  3. P. Kollias, D. J. McLaughlin, S. Frasier, M. Oue, E. Luke, and A. Sneddon, "Advances and applications in low-power phased array X-band weather radars," in Proceedings of 2018 IEEE Radar Conference, Oklahoma City: OK, pp. 1359-1364, 2018.
  4. J. Cai, Y. Zhang, R. J. Doviak, Y. Shrestha, and P. W. Chan, "Diagnosis and Classification of Typhoon-Associated Low-Altitude Turbulence Using HKO-TDWR Radar Observations and Machine Learning," IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 6, pp. 3633-3648, Jun. 2019. https://doi.org/10.1109/TGRS.2018.2886070
  5. M. Golbon-Haghighi, G. Zhang, and R. J. Doviak, "Ground Clutter Detection for Weather Radar Using Phase Fluctuation Index," IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 5, pp. 2889-2895, May. 2019. https://doi.org/10.1109/TGRS.2018.2878378
  6. D. Schvartzman, S. M. Torres, and T. -Y. Yu, "Distributed Beams: Concept of Operations for Polarimetric Rotating Phased Array Radar," IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 11, pp. 9173-9191, Nov. 2021. https://doi.org/10.1109/TGRS.2020.3047090
  7. H. Krim and M. Viberg, "Two decades of array signal processing research: the parametric approach," IEEE Signal Processing Magazine, vol. 13, no. 4, pp. 67-94, Jul. 1996. https://doi.org/10.1109/79.526899
  8. D. S. Zrnic, "Estimation of spectral moments for weather echoes," IEEE Transactions on Geoscience Electronics, vol. 17, no. 4, pp. 113-128, Oct. 1979. https://doi.org/10.1109/TGE.1979.294638
  9. J. Lee, "The efficient clutter simulation method for airborne radars," Journal of the Korea Institute of Information and Communication Engineering, vol. 23, no. 9, pp. 1123-1130, Sep. 2019. https://doi.org/10.6109/JKIICE.2019.23.9.1123