DOI QR코드

DOI QR Code

FPGA-based Implementation of Fast Edge Detection using Sobel Operator

소벨 연산을 이용한 FPGA 기반 고속 윤곽선 검출 회로 구현

  • Ryu, Sang-Moon (Department of Information and Control Engineering, Kunsan National University)
  • Received : 2022.07.05
  • Accepted : 2022.07.20
  • Published : 2022.08.31

Abstract

The edges of image should be detected first so that the objects in the image can be identified. An hardware-implemented edge detection algorithm outperforms its software version. Sobel operation is the most suitable algorithm for an hardware implementation of edge detection. And lots of works have been done to perform Sobel operations efficiently on FPGA-based hardware. This work proposes how to implement fast edge detection circuit on FPGA, which is based on the conventional circuit for edge detection using Sobel operator. The newly proposed circuit is suitable for processing images when the images are stored in memory devices and outperforms the conventional one with little additional FPGA resources. Both the conventional circuit and the proposed circuit were implemented on an FPGA. And the result showed that the proposed circuit almost doubles the performance in processing images and needs little additional FPGA resources.

영상에 포함된 객체의 인식을 위해서는 영상에 대한 윤곽선 검출이 선행되어야 한다. 윤곽선 검출 연산이 하드웨어로 수행되면 그 수행 시간이 소프트웨어로 구현된 경우보다 비교할 수 없을 만큼 감소하게 된다. 윤곽선 검출을 위한 연산 중 하드웨어 구현에 적합한 연산은 소벨 연산이며, 소벨 연산을 효율적으로 FPGA로 구현하기 위한 많은 연구가 수행되었다. 본 논문에서는 소벨 연산을 FPGA로 구현하기 위한 기존의 구조를 개선하여, 약간의 추가적인 하드웨어 자원의 사용만으로 그 성능을 개선할 수 있는 회로 구조를 제안한다. 제안된 구조는 윤곽선 검출 대상 영상이 메모리에 저장되어 있는 경우에 적합하며 기존의 방법 대비 약 2배의 성능 향상을 이룰 수 있다.

Keywords

References

  1. C. Zhang, N. Zhang, W. Yu, S. Hu, X. Wang, and H. Liang, "Improved Canny-based algorithm for image edge detection," in Proceeding of 2021 36th Youth Academic Annual Conference of Chinese Association of Automation, Nanchang, China, pp. 678-683, 2021.
  2. L. Wang and Y. Sun, "Improved Canny edge detection algorithm," in Proceeding of 2021 2nd International Conference on Computer Science and Management Technology, Shanghai, China, pp. 414-417, 2021.
  3. M. Weidong, T. Ying, Y. Yuxin, and Z. Yun, "Target Extraction Method Based on Improved Saliency Algorithm and Sobel Edge," in Proceeding of 2020 5th International Conference on Mechanical, Control and Computer Engineering, Harbin, China, pp. 1509-1512, 2020.
  4. T. Wu, L. Wang, and J. Zhu, "Image Edge Detection Based on Sobel with Morphology," in Proceeding of 2021 IEEE 5th Information Technology, Networking, Electronic and Automation Control Conference, Xi'an, China, pp. 1216-1220, 2021.
  5. S. Chen and X. Yang, "An Enhanced Adaptive Sobel Edge Detector Based on Improved Genetic Algorithm and Non-Maximum Suppression," in Proceeding of 2021 China Automation Congress, Beijing, China, pp. 8029-8034, 2021.
  6. C. T. Johnston, K. T. Gribbon, and D. G. Bailey, "Implementing Image Processing Algorithms on FPGAs," in Proceeding of 11th Electronics New Zealand Conference, New Zealand, pp. 118-123, 2004.
  7. G. -X. Yao, "Design of edge detection algorithm for image sobel based on FPGA," in Proceeding of 2015 4th International Conference on Computer Science and Network Technology, Harbin, China, pp. 851-853, 2015.
  8. C. -S. Park and H. -S. Kim, "FPGA Implementation for Real Time Sobel Edge Detector Block Using 3-Line Buffers," Journal of Institute of Korean Electrical and Electronics Engineers, vol. 19, no. 1, pp. 10-17, Mar. 2015.
  9. T. M. Khan, D. G. Bailey, M. A. U. Khan, and Y. Kong, "Real-time edge detection and range finding using FPGAs," International Journal for Light and Electron Optics, vol. 126, no. 17, pp. 1545-1550, Sep. 2015. https://doi.org/10.1016/j.ijleo.2015.01.024
  10. N. M. Yusoff, I. S. A. Halim, N. E. Abdullah, and A. A. A. Rahim, "Real-time Hevea Leaves Diseases Identification using Sobel Edge Algorithm on FPGA," in Proceeding of 2018 9th IEEE Control and System Graduate Research Colloquium, Shah Alam, Malaysia, pp. 168-171, 2018.
  11. Z. Xiangxi, Z. Yonghui, Z. Shuaiyan, and Z. Jian, "FPGA implementation of edge detection for Sobel operator in eight directions," in Proceeding of 2018 IEEE Asia Pacific Conference on Circuits and Systems, Chengdu, China, pp. 520-523, 2018.
  12. K. Zhang, Y. Zhang, P. Wang, Y. Tian, and J. Yang, "An Improved Sobel Edge Algorithm and FPGA Implementation," in Proceeding of 8th International Congress of Information and Communication Technology, Karachi, Pakistan, pp. 243-248, 2018.
  13. N. Nausheen, A. Seal, P. Khanna, and S. Halder, "A FPGA based implementation of Sobel edge detection," Microprocessors and Microsystems, vol. 56, pp. 84-91, Feb. 2018. https://doi.org/10.1016/j.micpro.2017.10.011
  14. R. K. Megalingam, M. Karath, P. Prajitha, and G. Pocklassery, "Computational Analysis between Software and Hardware Implementation of Sobel Edge Detection Algorithm," in Proceeding of 2019 International Conference on Communication and Signal Processing, Chennai, India, pp. 529-533, 2019.
  15. J. -H. Lim and J. -Y. Ryu, "Edge Detection Control of Color Images Using FPGA," Journal of Institute of Control, Robotics and Systems, vol. 25, no. 10, pp. 936-941, Sep. 2019. https://doi.org/10.5302/J.ICROS.2019.19.0161
  16. H.L. Sneha, "The Why and How of Pipelining in FPGAs" [Internet]. Available: https://www.allaboutcircuits.com/technical-articles/why-how-pipelining-in-fpga/.
  17. AXI4-Stream Protocol Specification, ARM, 2010.
  18. Vivado Design Suite AXI Reference Guide, Xilinx, 2017.
  19. 7 Series FPGAs Memory Resources, Xilinx, 2019.