DOI QR코드

DOI QR Code

The Improvement of the LIDAR System of the School Zone Applying Artificial Intelligence

인공지능을 적용한 스쿨존의 LIDAR 시스템 개선 연구

  • Park, Moon-Soo (Department of Convergence Engineering, Hoseo Graduate School of Venture) ;
  • Park, Dea-Woo (Department of Convergence Engineering, Hoseo Graduate School of Venture)
  • Received : 2022.06.28
  • Accepted : 2022.07.04
  • Published : 2022.08.31

Abstract

Efforts are being made to prevent traffic accidents in the school zone in advance. However, traffic accidents in school zones continue to occur. If the driver can know the situation information in the child protection area in advance, accidents can be reduced. In this paper, we design a camera that eliminates blind spots in school zones and a number recognition camera system that can collect pre-traffic information. It is designed by improving the LIDAR system that recognizes vehicle speed and pedestrians. It collects and processes pedestrian and vehicle image information recognized by cameras and LIDAR, and applies artificial intelligence time series analysis and artificial intelligence algorithms. The artificial intelligence traffic accident prevention system learned by deep learning proposed in this paper provides a forced push service that delivers school zone information to the driver to the mobile device in the vehicle before entering the school zone. In addition, school zone traffic information is provided as an alarm on the LED signboard.

스쿨존에서 교통사고를 사전에 예방하려고 노력하고 있다. 하지만, 스쿨존 내 교통사고는 계속 발생하고 있다. 운전자가 어린이보호구역 내 상황 정보를 미리 알 수 있으면, 사고를 줄일 수 있다. 본 논문에서는 스쿨존 내 사각지대를 없애는 카메라, 사전 교통정보를 수집할 수 있는 번호인식 카메라 시스템을 설계한다. 차량속도 및 보행자를 인식하는 LIDAR 시스템을 개선하여 설계한다. 카메라 및 LIDAR에서 인식된 보행자 및 차량 영상 정보를 수집하고 가공하여, 인공지능 시계열 분석 및 인공지능 알고리즘을 적용한다. 본 논문에서 제안한 딥러닝으로 학습된 인공지능 교통사고 예방 시스템은, 스쿨존 진입 전 차량 내 모바일 장치에 스쿨존의 정보를 운전자에게 전달하는 강제 푸시서비스를 한다. 그리고 LED 안내판에 스쿨존 교통정보를 알람으로 제공한다.

Keywords

References

  1. Act on the Aggravated Punishment, etc. of Specific Crimes, 2020 [Internet]. Available: https://www.law.go.kr/LSW/lsInfoP.do?efYd=20200505&lsiSeq=213817#0000.
  2. Road Traffic Act, 2021 [Internet]. Available: https://www.law.go.kr/LSW/lsInfoP.do?efYd=20220420&lsiSeq=236207#0000.
  3. 2020 Edition of Traffic Accident Statistics Analysis (2019 Statistics), "Road Traffic Authority," pp.54 and 2020 [Internet]. Available: http://taas.koroad.or.kr/%web/bdm/srs/selectStaticalReportsList.do?menuId=WEB_KMP_IDA_SRS_TAA.
  4. W. S. Ji, S. Y. Choi, "Safety of Child Protection Zone, which is insufficient under the Min-sik Act," Gyeonggi Research Institute, 2020 [Internet]. Available: https://www.gplib.kr/poc/www/view.do?key=1903277608341&docKey=2005214497097.
  5. J. H. Park, B. S. Moon, B. J. Kim, G. H. Park, Y. R. Kim, . H. Kim, and H. M. Shim, "Development of Traffic Accident Prevention System in School-zone Based on Artificial Intelligence," in Proceedings of the Korea Information Processing Society Conference, Online, vol. 27, no. 2, pp. 870-87, 2020.
  6. J. H. Kim and J. H. Lim, "License Plate Detection and Recognition Algorithm using Deep Learning," Journal of IKEEE, vol. 23, no. 2, pp. 642-651, Jun. 2019. https://doi.org/10.7471/IKEEE.2019.23.2.642
  7. G. S. Lee, Y. J. Kim, and D. K. Ko, "Development of vehicle number recognition program based on deep learning algorithm," Journal of The Korean Cadastre Information Association, vol. 22, no. 2, pp.124-135, Aug. 2020. https://doi.org/10.46416/JKCIA.2020.08.22.2.124
  8. J. M. Lee, D. H. Kim, and J. D. Kim, "CPU-based YOLO Performance Enhancement Technique for CCTV Real-time Object Detection," in Proceedings of Korea Computer Congress, Jeju, Korea, vol. 2018, no. 6, pp. 870-872, 2018.
  9. H. S. Park, P. J. Kim, and S. J. Lee, "Changes of recognition rate in YOLO v4 according to image quality," in Proceedings of Summer Annual Conference of IEIE, Jeje, Korea, vol. 2020, no. 8, pp. 1984-1986, 2020.
  10. Y. R. Byeon and M. B. Park, "Improving camera and radar-based object recognition and lidar fusion recognition performance," in Proceedings of Korea Automotive Engineering Association 2020 Annual Spring Conference, vol. 2020, no. 7, pp.549-550, 2020.
  11. G. H. Cho, H. W. Cho, S. M. Oh, J. C. Shin, D. M. Bae, and Y. J. Song, "Image Analysis and Object Recognition Technology using YOLO V3 Algorithms and LIDAR Sensors," in Proceedings of KICS Winter Conference 2019, Pyeongchang, Korea, vol. 2019, no. 1, pp.30-31, 2019.
  12. A. Bochkovskiy, C. Y. Wang, and H. Y. M. Liao, "YOLOv4: Optimal Speed and Accuracy of Object Detection," arXiv: 2004.10934, Apr. 2020.