과제정보
본 결과물은 농림축산식품부의 재원으로 농림식품기술기획평가원의 스마트팜다부처패키기혁신기술개발사업 (421040-04)과 아우토크립트(주)의 지원을 받아 연구되었음
참고문헌
- Ba, J. L., Kiros, J. R. and Hinton, G. E.(2016), Layer normalization [Online], Available at https://arxiv.org/abs/1607.06450
- Bena, B. and Kalita, J.(2020), Introducing aspects of creativity in automatic poetry generation [Online], Available at https://arxiv.org/abs/2002.02511
- CNS-LINK, https://new-m2m.tistory.com/21, 2022.08.04.
- He, K., Zhang, X., Ren, S. and Sun, J.(2016), Identity mappings in deep residual networks [Online], Available at https://arxiv.org/abs/1603.05027
- Hendrycks, D. and Gimpel, K.(2016), Gaussian error linear units (GELUs) [Online], Available at https://arxiv.org/abs/1606.08415
- Horn, R. A. and Johnson, C. R.(2012), Matrix Analysis (2nd ed.), Cambridge, UK, Cambridge University Press.
- Kelarestaghi, K. B.(2019), A risk based approach to intelligent transportation systems security, Doctoral Dissertation, Virginia Polytechnic Institute and State University.
- Kelarestaghi, K. B., Heaslip, K., Khalilikhah, M., Fuentes, A. and Fessmann, V.(2018), "Intelligent transportation system security: Hacked message signs", Society of Automotive Engineers International Journal of Transportation Cybersecurity and Privacy, vol. 1, no. 2, pp.1-15.
- Korean Broadcasting System, https://news.kbs.co.kr/news/view.do?ncd=5329562, 2022.05.12.
- Mai, K. T., Davies, T. and Griffin, L. D.(2022), Self-supervised losses for one-class textual anomaly detection [Online], Available at https://arxiv.org/abs/2204.05695.
- Manolache, A., Brad, B. and Burceanu, E.(2021), DATE: Detecting anomalies in text via self-supervision of transformers [Online], Available at https://arxiv.org/abs/2104.05591
- Mohaghegh, M. and Abdurakhmanov, A.(2021), "Anomaly detection in text data sets using character-level representation", Proc. International Conference on Machine Vision and Information Technology, Auckland, New Zealand, pp.1-6.
- Nam, M., Park, S. and Kim, D.(2021), "Intrusion detection method using bi-directional GPT for in-vehicle controller area networks", IEEE Access, vol. 9, pp.124931-124944. https://doi.org/10.1109/ACCESS.2021.3110524
- National Transport Information Center, https://openapi.its.go.kr:8090, 2022.04.25.
- Nuspire(2021), Nuspire Threat Report Q1 2021 [Online], Available at https://www.nuspire.com/resources/q1-2021-threat-report
- Otter, D. W., Medina, J. R. and Kalita, J. K.(2021), "A Survey of the usages of deep learning for natural language processing", IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 2, pp.604-624. https://doi.org/10.1109/TNNLS.2020.2979670
- Park, S., Kim, M. and Lee, S.(2018), "Anomaly detection for HTTP using convolutional autoencoders", IEEE Access, vol. 6, pp.70884-70901. https://doi.org/10.1109/ACCESS.2018.2881003
- Radford, A., Narasimhan, K., Salimans, T. and Sutskever, I.(2018), Improving language understanding by generative pre-training [Online], Available at https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
- Radford, A., Wu, J., Child, R., Luan, D., Amodei, D. and Sutskever, I.(2019), Language models are unsupervised multitask learners [Online], Available at http://www.persagen.com/files/misc/radford2019language.pdf.
- Ruff, L., Zemlyanskiy, Y., Vandermeulen, R., Schnake, T. and Kloft, M.(2019), "Self-attentive, multi-context one-class classification for unsupervised anomaly detection on text", Proc. Annual Meetings of the Association for Computational Linguistics, Florence, Italy, pp.4061-4071.
- Schuster, M. and Paliwal, K. K.(1997), "Bi-directional recurrent neural networks", IEEE Transactions on Signal Processing, vol. 45, no. 11, pp.2673-2681. https://doi.org/10.1109/78.650093
- The Gainesville Sun, http://www.gainesville.com/article/20091002/articles/910021006, 2022.06.04.
- Vajjala, S., Majumder, B., Gupta, A. and Surana, H.(2020), Practical natural language processing: A Comprehensive guide to building real-world NLP systems, O'ReillyMedia, USA.
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. and Polosukhin, I.(2017), "Attention is all you need", Proc. International Conference on Neural Information Processing Systems, Long Beach, CA, USA, pp.6000-6010.
- Wired, https://www.wired.com/2009/02/austin-road-sig, 2022.06.04.
- Yin, W., Kann, K., Yu, M. and Schutze, H.(2017), Comparative study of CNN and RNN for natural language processing [Online], Available at https://arxiv.org/abs/1702.01923
- Zaheer, M., Guruganesh, G., Dubey, A., Ainslie, J., Alberti, C., Ontanon, S., Pham, P., Ravula, A., Wang, Q., Yang, L. and Ahmed, A.(2021), Big Bird: Transformers for Longer Sequences [Online], Available at https://arxiv.org/abs/2007.14062