DOI QR코드

DOI QR Code

Flow rate prediction at Paldang Bridge using deep learning models

딥러닝 모형을 이용한 팔당대교 지점에서의 유량 예측

  • Seong, Yeongjeong (Department of Advanced Science and Technology Convergence, Kyungpook National University) ;
  • Park, Kidoo (Emergency Management Institute, Kyungpook National University) ;
  • Jung, Younghun (Department of Advanced Science and Technology Convergence, Kyungpook National University)
  • 성연정 (경북대학교 미래과학기술융합학과) ;
  • 박기두 (경북대학교 재난대응전략연구소) ;
  • 정영훈 (경북대학교 미래과학기술융합학과)
  • Received : 2022.01.29
  • Accepted : 2022.06.12
  • Published : 2022.08.31

Abstract

Recently, in the field of water resource engineering, interest in predicting time series water levels and flow rates using deep learning technology that has rapidly developed along with the Fourth Industrial Revolution is increasing. In addition, although water-level and flow-rate prediction have been performed using the Long Short-Term Memory (LSTM) model and Gated Recurrent Unit (GRU) model that can predict time-series data, the accuracy of flow-rate prediction in rivers with rapid temporal fluctuations was predicted to be very low compared to that of water-level prediction. In this study, the Paldang Bridge Station of the Han River, which has a large flow-rate fluctuation and little influence from tidal waves in the estuary, was selected. In addition, time-series data with large flow fluctuations were selected to collect water-level and flow-rate data for 2 years and 7 months, which are relatively short in data length, to be used as training and prediction data for the LSTM and GRU models. When learning time-series water levels with very high time fluctuation in two models, the predicted water-level results in both models secured appropriate accuracy compared to observation water levels, but when training rapidly temporal fluctuation flow rates directly in two models, the predicted flow rates deteriorated significantly. Therefore, in this study, in order to accurately predict the rapidly changing flow rate, the water-level data predicted by the two models could be used as input data for the rating curve to significantly improve the prediction accuracy of the flow rates. Finally, the results of this study are expected to be sufficiently used as the data of flood warning system in urban rivers where the observation length of hydrological data is not relatively long and the flow-rate changes rapidly.

최근의 수자원공학 분야는 4차산업혁명과 더불어 비약적으로 발전된 딥러닝 기술을 활용한 시계열 수위 및 유량의 예측에 대한 관심이 높아지고 있다. 또한 시계열 자료의 예측이 가능한 LSTM 모형과 GRU 모형을 활용하여 수위 및 유량 예측을 수행하고 있지만 시간 변동성이 매우 큰 하천에서의 유량 예측 정확도는 수위 예측 정확도에 비해 낮게 예측되는 경향이 있다. 본 연구에서는 유량변동이 크고 하구에서의 조석의 영향이 거의 없는 한강의 팔당대교 관측소를 선택하였다. 또한, LSTM 모형과 GRU 모형의 입력 및 예측 자료로 활용될 유량변동이 큰 시계열 자료를 선택하였고 총 자료의 길이는 비교적 짧은 2년 7개월의 수위 자료 및 유량 자료를 수집하였다. 시간변동성이 큰 시계열 수위를 2개의 모형에서 학습할 경우, 2개의 모형 모두에서 예측되는 수위 결과는 관측 수위와 비교하여 적정한 정확도가 확보되었으나 변동성이 큰 유량 자료를 2개의 모형에서 직접 학습시킬 경우, 예측되는 유량 자료의 정확도는 악화되었다. 따라서, 본 연구에서는 급변하는 유량을 정확히 예측하기 위하여 2개 모형으로 예측된 수위 자료를 수위-유량관계곡선의 입력자료로 활용하여 유량의 예측 정확도를 크게 향상시킬 수 있었다. 마지막으로 본 연구성과는 수문자료의 별도 가공없이 관측 길이가 상대적으로 충분히 길지 않고 유출량이 급변하는 도시하천에서의 홍수예경보 자료로 충분히 활용할 수 있을 것으로 기대된다.

Keywords

Acknowledgement

이 논문은 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(No.2021R1I1A3050803).

References

  1. Adamowski, J., and Chan, H.F. (2011). "A wavelet neural network conjunction model for groundwater level forecasting." Journal of Hydrology, Vol. 407, pp. 28-40. https://doi.org/10.1016/j.jhydrol.2011.06.013
  2. Chen, P.-A., Chang, L.-C., and Chang, L.-C. (2013). "Reinforced recurrent neural networks for multi-step-ahead flood forecasts." Journal of Hydrology, Vol. 497, pp. 71-79. https://doi.org/10.1016/j.jhydrol.2013.05.038
  3. Cho, K., Van Merrienboer, B., Bahdanau, D., and Bengio, Y. (2014). "On the properties of neural machine translation: Encoder-decoder approaches." Proceedings of the SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, Doha, Qatar, pp. 103-111.
  4. Guo, F., Yang, J., Li, H., Li, G., and Zhang, Z. (2021). "A convLSTM conjunction model for groundwater level forecasting in a karst aquifer considering connectivity characteristics." Water, Vol. 13, No. 19, 2759.
  5. Hipni, A., El-Shafie, A., Najah, A., Karim, O.A., Hussain, A., and Mukhlisin, M. (2013). "Daily forecasting of dam water levels: Comparing a support vector machine (SVM) model with adaptiveneuro fuzzy inference system (ANFIS)." Water Resources Management, Vol. 27, pp. 3803-3823. https://doi.org/10.1007/s11269-013-0382-4
  6. Hochreiter, S., and Schmidhuber, J. (1997). "Long short-term memory." Neural Computation, Vol. 9, pp. 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
  7. Jung, S., Cho, H., Kim, J., and Lee, G. (2018). "Prediction of water level in a tidal river using a deep-learning based LSTM model." Journal of Korea Water Resources Association, Vol. 51, pp. 1207-1216. https://doi.org/10.3741/JKWRA.2018.51.12.1207
  8. Kisi, O., Shiri, J., and Nikoofar, B. (2012). "Forecasting daily lake levels using artificial intelligence approaches." Computers & Geosciences, Vol. 41, pp. 169-180. https://doi.org/10.1016/j.cageo.2011.08.027
  9. Kumar, D.N., Raju, K.S., and Sathish, T. (2004). "River flow forecasting using recurrent neural networks." Water Resources Management, Vol. 18, pp. 143-161. https://doi.org/10.1023/B:WARM.0000024727.94701.12
  10. Ministry of Environment (ME) (2018). Korean hydrological survey yearbook.
  11. Mok, J.-Y., Choi, J.-H., and Moon, Y.-I. (2020). "Prediction of multipurpose dam inflow using deep learning." Journal of Korea Water Resources Association, Vol. 53, pp. 97-105. https://doi.org/10.3741/JKWRA.2020.53.2.97
  12. Park, K., Jung, Y., Kim, K., and Park, S.K. (2020). "Determination of deep learning model and optimum length of training data in the river with large fluctuations in flow rates." Water, Vol. 12, No. 12, 3537.
  13. Park, K., Jung, Y., Seong, Y., and Lee, S. (2022). "Development of deep learning models to improve the accuracy of water levels time series prediction through multivariate hydrological data." Water, Vol. 14, No. 3, 469.
  14. Sung, J.Y., Lee J., Chung, I.-M., and Heo, J.-H. (2017). "Hourly water level forecasting at tributary affected by main river condition." Water, Vol. 9, No. 9, 644.
  15. Tran, Q.-K., and Song, S.-K. (2017). "Water level forecasting based on deep learning: A use case of Trinity River-Texas-the United States." Journal of KIISE, Vol. 44, pp. 607-612. https://doi.org/10.5626/JOK.2017.44.6.607
  16. Zhang, D., Lin, J., Peng, Q., Wang, D., Yang, T., Sorooshian, S., Liu, X., and Zhuang, J. (2018). "Modeling and simulating of reservoir operation using the artificial neural network, support vector regression, deep learning algorithm." Journal of Hydrology, Vol. 565, pp. 720-736. https://doi.org/10.1016/j.jhydrol.2018.08.050
  17. Zhang, D., Peng, Q., Lin, J., Wang, D., Liu, X., and Zhuang, J. (2019). "Simulating reservoir operation using a recurrent neural network algorithm." Water, Vol. 11, No.4, 865.