DOI QR코드

DOI QR Code

광물탄산화 공정 이후 발생하는 잔사슬래그의 수계 내 비소 제거 기작

Arsenic Removal Mechanism of the Residual Slag Generated after the Mineral Carbonation Process in Aqueous System

  • 김경태 (부경대학교 지구환경시스템과학부 지구환경과학전공) ;
  • 일함 압둘 라티에프 (부경대학교 지구환경시스템과학부 환경지질과학전공) ;
  • 김단우 (부경대학교 지구환경시스템과학부 지구환경과학전공) ;
  • 김선희 (부경대학교 지구환경시스템과학부 지구환경과학전공) ;
  • 이민희 (부경대학교 지구환경시스템과학부 환경지질과학전공)
  • Kim, Kyeongtae (Major of Earth and Environmental Sciences, Division of Earth Environmental System Science, Pukyong National University) ;
  • Latief, Ilham Abdul (Major of Environmental Geosciences, Division of Earth Environmental System Science, Pukyong National University) ;
  • Kim, Danu (Major of Earth and Environmental Sciences, Division of Earth Environmental System Science, Pukyong National University) ;
  • Kim, Seonhee (Major of Earth and Environmental Sciences, Division of Earth Environmental System Science, Pukyong National University) ;
  • Lee, Minhee (Major of Environmental Geosciences, Division of Earth Environmental System Science, Pukyong National University)
  • 투고 : 2022.08.05
  • 심사 : 2022.08.25
  • 발행 : 2022.08.30

초록

제강슬래그를 이용한 광물탄산화 공정 이후 발생하는 잔사슬래그의 비소(As) 제거 기작 규명을 위해, 전로제강슬래그(blast oxygen furnace slag: BOF)에 직접 및 간접탄산화 공정이 각각 적용된 두 종류의 잔사슬래그를 대상으로 실험실 규모의 실험을 실시하였다. 광물탄산화 공정은 잔사슬래그의 화학적-광물학적 조성변화, 용출수의 pH 저감, 표면 미세공극 형성 등 기존 제강슬래그의 특성을 변화시키는 것으로 밝혀졌다. 다양한 pH 범위의 As 인공오염수(초기농도: 203.6 mg/L)에 잔사슬래그를 반응시킨 배치실험에서, RDBOF (직접탄산화 후 BOF)는 초기 pH가 감소할수록 As 제거효율이 증가하는 경향을 보이며 초기 pH가 1인 환경에서 99.3%의 As 제거효율을 나타냈다. 이는 RDBOF 표면을 피복하던 CaCO3가 낮은 초기 pH 환경에서 용해되어 RDBOF 표면에서 철산화물의 노출 면적을 증가시킴으로 인해, 철산화물의 As 음이온 표면 흡착을 촉진한 것에서 기인한 것으로 판단되었다. 반면 RIBOF (간접탄산화 후 BOF)는 초기 pH가 높은 환경일수록 As 제거효율이 증가하며 초기 pH 10의 As 오염수에서 70.0%의 가장 높은 As 제거효율을 보였다. RIBOF의 영전하점(pH 4.5)을 고려할 때, 초기 pH 4-10 조건에서 음전하를 띠는 RIBOF의 표면에 As 음이온의 전기적 인력에 의한 표면 흡착은 발생하기 어려울 것으로 예상되었다. 다만 수용액 내 용존하는 Ca2+, Mn2+, Fe2+와 같은 2가 양이온들에 의해 As 음이온이 RIBOF 내 철산화물에 간접적으로 고정되는 양이온 가교효과(cation bridge effect)가 발생하였고, 초기 pH가 높은 환경일수록 슬래그 표면이 더 강한 음전하를 띠며 양이온 가교효과가 가속화되어, 결과적으로 많은 As가 흡착된 것으로 판단되었다. 하지만 강알칼리 (pH 10-11 이상) 조건에서는 RIBOF 표면에 생성된 칼슘침전물이 철산화물을 피복함으로써 철산화물에 의한 As 음이온 표면 흡착을 저해하는 현상이 발생하였다. 또한 배치실험 이후 회수된 잔사슬래그에 TCLP 시험을 수행한 결과, RDBOF와 RIBOF 모두 2% 미만의 As 탈착률을 보여 안정적인 형태로 As가 고정되어 있음이 확인되었다. 본 연구 결과를 통해, 잔사슬래그가 기존에 As 제거제로 활용되던 제강슬래그의 단점인 수계의 급격한 pH 상승을 억제하는 동시에, 높은 As 제거효율 및 안정성을 나타내는 저비용-친환경의 As 제거제로서의 활용 가능성을 입증하였다.

Laboratory-scale experiments were performed to identify the As removal mechanism of the residual slag generated after the mineral carbonation process. The residual slags were manufactured from the steelmaking slag (blast oxygen furnace slag: BOF) through direct and indirect carbonation process. RDBOF (residual BOF after the direct carbonation) and RIBOF (residual BOF after the indirect carbonation) showed different physicochemical-structural characteristics compared with raw BOF such as chemical-mineralogical properties, the pH level of leachate and forming micropores on the surface of the slag. In batch experiment, 0.1 g of residual slag was added to 10 mL of As-solution (initial concentration: 203.6 mg/L) titrated at various pH levels. The RDBOF showed 99.3% of As removal efficiency at initial pH 1, while it sharply decreased with the increase of initial pH. As the initial pH of solution decreased, the dissolution of carbonate minerals covering the surface was accelerated, increasing the exposed area of Fe-oxide and promoting the adsorption of As-oxyanions on the RDBOF surface. Whereas, the As removal efficiency of RIBOF increased with the increase of initial pH levels, and it reached up to 70% at initial pH 10. Considering the PZC (point of zero charge) of the RIBOF (pH 4.5), it was hardly expected that the electrical adsorption of As-oxyanion on surface of the RIBOF at initial pH of 4-10. Nevertheless it was observed that As-oxyanion was linked to the Fe-oxide on the RIBOF surface by the cation bridge effect of divalent cations such as Ca2+, Mn2+, and Fe2+. The surface of RIBOF became stronger negatively charged, the cation bridge effect was more strictly enforced, and more As can be fixed on the RIBOF surface. However, the Ca-products start to precipitate on the surface at pH 10-11 or higher and they even prevent the surface adsorption of As-oxyanion by Fe-oxide. The TCLP test was performed to evaluate the stability of As fixed on the surface of the residual slag after the batch experiment. Results supported that RDBOF and RIBOF firmly fixed As over the wide pH levels, by considering their As desorption rate of less than 2%. From the results of this study, it was proved that both residual slags can be used as an eco-friendly and low-cost As remover with high As removal efficiency and high stability and they also overcome the pH increase in solution, which is the disadvantage of existing steelmaking slag as an As remover.

키워드

과제정보

본 연구는 환경부 "지중환경오염·위해관리기술개발사업(2019002470003)"에서 지원받았으며 이에 감사드립니다. 또한 논문을 세심하게 검토하여주신 심사위원 및 편집위원님께 감사드립니다.

참고문헌

  1. Antelo, J., Arce, F. and Fiol, S. (2015) Arsenate and phosphate adsorption on ferrihydrite nanoparticles. Synergetic interaction with calcium ions, Chem. Geol., v.410, n.2, p.53-62. doi: 10.1016/j.chemgeo.2015.06.011
  2. Azdarpour, A., Asadullah, M., Mohammadian, E., Hamidi, H., Junin, R. and Karaei, M. A. (2015) A review on carbon dioxide mineral carbonation through pH-swing process. Chem. Eng. J., v.279, p.615-630. doi: 10.1016/j.cej.2015.05.064
  3. Babel, S. and Kurniawan T.A. (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J. Hazard. Mater., 97(1-3), 219-243. doi: 10.1016/s0304-3894(02)00263-7
  4. Bolisetty, S., Peydayesh M. and Mezzenga, R. (2019) Sustainable technologies for water purification from heavy metals: review and analysis. Chem. Soc. Rev., 48(2), 463-487. doi: 10.1039/c8cs00493e
  5. Bothe, J.V. and Brown, P.W. (1999) The stabilities of calcium arsenates at 23±1℃. J. Hazard. Mater., v.69, n.2, p.197-207. doi: 10.1016/s0304-3894(99)00105-3
  6. Chatterjee, S., Mahanty, S., Das, P., Chaudhuri, P. and Das, S. (2020) Biofabrication of iron oxide nanoparticles using manglicolous fungus Aspergillus Niger BSC-1 and removal of Cr(VI) from aqueous solution. Chem. Eng. J., v.385, 123790. doi: 10.1016/j.cej.2019.123790
  7. Chen, Z., Cang, Z., Yang, F., Zhang, J. and Zhang, L. (2021) Carbonation of steelmaking slag presents an opportunity for carbon neutral: A review. J. CO2 Util., v54, 101738. doi: 10.1016/j.jcou.2021.101738
  8. Cornell, R. and Schwertmann, U. (1996) The iron oxides: structure, properties, reactions, occurrence and uses, VCH Verlagsgesellshaft GMBH Weinheim, Germany. doi: 10.1515/CORRREV.1997.15.3-4.533
  9. Fischel, M.H.H., Fischel, J.S., Lafferty, B.J. and Sparks, D.L. (2015) The influence of environmental conditions on kinetics of arsenite oxidation by manganese-oxides. Geochem. Trans., v.16, n.1. doi: 10.1186/s12932-015-0030-4
  10. Guan, X., Dong, H., Ma, J. and Jiang, L. (2009) Removal of arsenic from water: Effects of competing anions on As(III) removal in KMnO4-Fe(II) process. Water Res., v.43, n.15, p.3891-3899. doi: 10.1016/j.watres.2009.06.008
  11. Hernandez-Flores, H., Pariona, N., Herrera-Trejo, M., Hdz-Garcia, H.M. and Mtz-Enriquez, A.I. (2018) Concrete/maghemite nanocomposites as novel adsorbents for arsenic removal. J. Mol. Struct., 1171, 9-16. doi: 10.1016/j.molstruc.2018.05.078
  12. IEA (International Energy Agency) (2017) World Energy Outlook 2017. doi: 10.1787/weo-2017-en
  13. IPCC (Intergovernmental Panel on Climate Change) (2018) Global Warming of 1.5℃.
  14. Jonsson, J. and Sherman, D.M. (2008) Sorption of As(III) and As(V) to siderite, green rust (fougerite) and magnetite: Implications for arsenic release in anoxic groundwaters. Chem. Geol., v.255, n.1-2, p.173-81. doi: 10.1016/j.chemgeo.2008.06.036
  15. Kim, S.H., Chung, H., Jeong, S. and Nam, K. (2021) Identification of pH-dependent removal mechanisms of lead and arsenic by basic oxygen furnace slag: Relative contribution of precipitation and adsorption. J. Clean. Prod., v.279, 123451. doi: 10.1016/j.jclepro.2020.123451
  16. Lackner, K.S. (2003) A Guide to CO2 Sequestration. Science, v.300, p.1677-1678. doi: 10.1126/science.1079033
  17. Lee, M., Paik, I.S., Kim, I., Kang, H. and Lee, S. (2007) Remediation of heavy metal contaminated groundwater originated from abandoned mine using lime and calcium carbonate. J. Hazard. Mater., v.144, n.1-2, p.208-214. doi: 10.1016/j.jhazmat.2006.10.007
  18. Liang, Y., Min, X., Chai, L., Wang, M., Liyang, W., Pan, Q. and Okido, M. (2017) Stabilization of arsenic sludge with mechanochemically modified zero valent iron. Chemosphere, v.168, p.1142-1151. doi: 10.1016/j.chemosphere.2016.10.087
  19. Librandi, P., Nielsen, P., Costa, G., Snellings, R., Quaghebeur, M. and Baciocchi, R. (2019) Mechanical and environmental properties of carbonated steel slag compacts as a function of mineralogy and CO2 uptake. J. CO2 Util., v.33, p.201-214. doi: 10.1016/j.jcou.2019.05.028
  20. Lin, H.T., Wang, M.C. and Li, G.C. (2004) Complexation of arsenate with humic substance in water extract of compost. Chemosphere, v.56, n.11, p.1105-1112. doi: 10.1016/j.chemosphere.2004.05.018
  21. Liu, C., Chuang, Y., Chen, T., Tian, Y., Li, H., Wang, M. and Zhang, W. (2015) Mechanism of arsenic adsorption on magnetite nanoparticles from water: Thermodynamic and spectroscopic studies, Environ. Sci. Technol., v.49, n.13, p.7726-7734. doi: 10.1021/acs.est.5b00381
  22. Martinez-Villegas, N., Briones-Gallardo, R., Ramos-Leal, J.A., Avalos-Borja, M., Castanon-Sandoval, A.D., Razo-Flores, E. and Villalobos, M. (2013) Arsenic mobility controlled by solid calcium arsenates: A case study in Mexico showcasing a potentially widespread environmental problem. Environ. Pollut., v.176, p.114-122. doi: 10.1016/j.envpol.2012.12.025
  23. Mahmoud, M.E., Saleh, M.M., Zaki, M.M. and Nabil, G.M. (2020) A sustainable nanocomposite for removal of heavy metals from water based on crosslinked sodium alginate with iron oxide waste material from steel industry. J. Environ. Chem. Eng., v.8, n.4, 104015. doi: 10.1016/j.jece.2020.104015
  24. Mak, M.S.H., Rao, P. and Lo, I.M.C. (2009) Effects of hardness and alkalinity on the removal of arsenic(V) from humic acid-deficient and humic acid-rich groundwater by zero-valent iron. Water Res., v.43, n.17, p.4296-4304. doi: 10.1016/j.watres.2009.06.022
  25. Mo, L., Zhang, F. and Deng, M. (2016) Mechanical performance and microstructure of the calcium carbonate binders produced by carbonating steel slag paste under CO2 curing. Cem. Concr. Res., v.88, p.217-226. doi: 10.1016/j.cemconres.2016.05.013
  26. Montperrus, M., Bohari, Y., Bueno, M., Astruc, A. and Astruc, M. (2002) Comparison of extraction procedures for arsenic speciation in environmental solid reference materials by high-performance liquid chromatography-hydride generation-atomic fluorescence spectroscopy. Appl. Organomet. Chem., v.16, p.347-354. doi: 10.1002/aoc.311
  27. Nordstrom, D.K., Majzlan, J. and Konigsberger, E. (2014) Thermodynamic Properties for Arsenic Minerals and Aqueous Species. Rev. Mineral. Geochem., v.79, n.1, p.217-255. doi: 10.2138/rmg.2014.79.4
  28. Roman-Ross, G., Cuello, G.J., Turrillas, X., Fernandez-Martinez, A. and Charlet, L. (2006) Arsenite sorption and co-precipitation with calcite. Chem. Geol., v.233, n.3-4, p.328-336. doi: 10.1016/j.chemgeo.2006.04.007
  29. Sadiq, M. (1997) Arsenic chemistry in soils: An overview of thermodynamic predictions and field observations. v.93, p.117-136. doi: 10.1007/bf02404751
  30. Sadiq, M., Zaidi, T.H. and Mian, A.A. (1983) Environmental behavior of arsenic in soils: Theoritical, Water, Air, & Soil Pollut., v.20, p.369-377. doi: 10.1007/bf00208511
  31. Sanna, A., Uibu, M., Caramanna, G., Kuusik, R. and Maroto-Valer, M.M. (2014) A review of mineral carbonation technologies to sequester CO2. Chem. Soc. Rev., v.43, n.23, p.8049-8080. doi: 10.1039/c4cs00035h
  32. Smith, S.D. and Edwards, M. (2005) The influence of silica and calcium on arsenate sorption to oxide surfaces, J. Water Supply Res., 54(4), 201-211. doi: 10.2166/aqua.2005.0019
  33. Son, M., Kim, G., Han, K., Lee, M.W. and Lim, J.T. (2017) Development Status and Research Direction in the Mineral Carbonation Technology Using Steel Slag. Korean Chem. Eng. Res., v.55, n.2, p.141-55. doi: 10.9713/kcer.2017.55.2.141
  34. USEPA (United States Environmental Protection Agency) (1992) Toxicity Characteristic Leaching Procedure. Method 1311.
  35. USEPA (United States Environmental Protection Agency) (2004) Chemical Contaminant Rules.
  36. USGS (United States Geological Survey) (2021) Mineral Commodity Summaries 2021.
  37. Vences-Alvarez, E., Lopez-Valdivieso, A., Chazaro-Ruiz, L.F., Flores-Zuniga, H. and Rangel-Mendez, J.R. (2020) Enhanced arsenic removal from water by a bimetallic material ZrOx-FeOx with high OH density. Environ. Sci. Pollut., v.27, n.26, p.33362-33372. doi: 10.1007/s11356-020-09492-8
  38. Wang, Y., Morin, G., Ona-Nguema, G., Juillot, F., Calas, G. and Brown., G.E. (2011) Distinctive Arsenic(V) Trapping Modes by Magnetite Nanoparticles Induced by Different Sorption Processes, Environ. Sci. Tech., v.45, n.17, p.7258-7266. doi: 10.1021/es200299f
  39. Wilkie, J.A. and Hering, J.G. (1996) Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbent ratios and co-occurring solutes, Colloids Surf., v.107(20), p.97-110. doi: 10.1016/0927-7757(95)03368-8
  40. Yadav, S. and Mehra, A. (2021) A Review on Ex Situ Mineral Carbonation, Environ. Sci. Pollut., v.28, p.12202-12231. doi: 10.1007/s11356-020-12049-4
  41. Yildirim, I.Z. and Prezzi, M. (2015) Geotechnical Properties of Fresh and Aged Basic Oxygen Furnace Steel Slag, J. Mater. Civ. Eng., v.27, n.12, 04015046. doi: 10.1061/(asce)mt.1943-5533.0001310
  42. Zhu, Y.N., Zhang, X.H., Xie, Q.L., Wang, D.Q. and Cheng, G.W. (2006) Solubility and Stability of Calcium Arsenates at 25℃, Water, Air, and Soil Pollut., v.169, n.1-4, p.221-238. doi: 10.1007/s11270-006-2099-y