DOI QR코드

DOI QR Code

국내 배터리원료광종 공급망 업스트림 리스크와 광물자원탐사부문에서의 대응방안

Upstream Risks in Domestic Battery Raw Material Supply Chain and Countermeasures in the Mineral Resource Exploration Sector in Korea

  • 오일환 (한국지질자원연구원 희소금속광상연구센터) ;
  • 허철호 (한국지질자원연구원 희소금속광상연구센터) ;
  • 김성용 (한국지질자원연구원 미래전략연구센터)
  • Oh, Il-Hwan (Critical Minerals Research Center, Korea Institute Geoscience and Mineral Resources) ;
  • Heo, Chul-Ho (Critical Minerals Research Center, Korea Institute Geoscience and Mineral Resources) ;
  • Kim, Seong-Yong (Future Geo-Strategy Research Center, Korea Institute Geoscience and Mineral Resources)
  • 투고 : 2022.08.20
  • 심사 : 2022.08.24
  • 발행 : 2022.08.30

초록

2050 탄소중립이라는 메가트렌드에 맞추어 청정에너지기술에 사용되는 핵심광물의 양이 파리기후변화협약기반 시나리오와 2050 탄소중립기반 시나리오에 따르면 각각 4배, 6배 증가하는 것으로 평가된다. 그리고, 한국의 경우, 2차전지에 사용되는 배터리 공급망에서 볼 때 배터리물질과 배터리셀팩을 제조하는 미드스트림에서는 강점을 보이나 원료물질을 제공하고 처리하는 업스트림에서는 어려움을 겪고 있다. 한국지질자원연구원은 이러한 배터리원료광종의 업트스림 리스크에 대응하기 위해 리튬, 니켈, 코발트에 대한 확보전략을 수립하고 탐사기술을 개발하고 있다. 리튬의 경우, 경상북도 울진에서 2020년부터 탐사를 진행하고 있고 2021년말 제반탐사자료를 종합하고 3D모델을 구축하여 정밀탐사대상지를 선정했으며, 2022년에는 정밀탐사대상지를 중심으로 리튬페그마타이트의 부존잠재량을 평가할 예정이다. 니켈의 경우, 과거 탐광을 했던 10여개 니켈황화물광상을 대상으로 예비조사를 통하여 2022년말 탐사대상지를 선정할 예정이다. 코발트의 경우, 남한에서는 유일하게 보국코발트가 알려져있지만 열수광상으로 코발타이트가 산출되었다는 기록만 있을뿐 세계적인 코발트광상(예. 모로코 Bou Azzer)의 성인을 보면, 초염기성암과 관련된 사문암체와 화강암의 접촉부에서 코발트광체가 발견되어 국내에서는 코발트탐사를 위한 프로토콜을 정립할 예정이다.

In line with the megatrend of 2050 carbon neutrality, the amount of critical minerals used in clean-energy technology is expected to increase fourfold and sixfold, respectively, according to the Paris Agreement-based scenario as well as the 2050 carbon-neutrality scenario. And, in the case of Korea, in terms of the battery supply chain used for secondary batteries, the midstream that manufactures battery materials and battery cell packs shows strength, but the upstream that provides and processes raw materials is experiencing difficulties. The Korea Institute of Geoscience and Mineral Resources has established a strategy to secure lithium, nickel, and cobalt and is conducting surveys to respond to the upstream risk of these types of battery raw materials. In the case of lithium, exploration has been carried out in Uljin, Gyeongsangbuk-do since 2020, and by the end of 2021, the survey area was selected for precision exploration by synthesizing all exploration data and building a 3D model. Potential resources will be assessed in 2022. In the case of nickel, the prospective site will be selected by the end of 2022 through a preliminary survey targeting 10 nickel sulfide deposits that have been prospected in the past. In the case of cobalt, Boguk cobalt is known only in South Korea, but there is only a record that cobalt was produced as a minor constituent of hydrothermal deposit. According to the literature, a cobalt ore body was found in the contact area between serpentinite and granite, and a protocol for cobalt exploration in Korea will be established.

키워드

과제정보

이 연구는 한국지질자원연구원 연구사업인 "국내 바나듐(V) 등 에너지 저장광물 정밀탐사기술 개발 및 부존량예측(22-3211-1), 지질자원 표본·기초학술연구와 선도형 R&D 정책/성과확산 연구(22-3120-1)"과제 지원을 받아 수행되었으며 이에 사의를 표한다. 바쁘신 와중에도 이 기술정보의 미비점을 지적, 수정하여 주신 책임편집위원님과 심사위원님들께 깊이 감사를 드린다. 또한, 국내 니켈 및 코발트 광상의 탐사 및 잠재성 자문을 해주신 고려대학교 최선규 명예교수님께 감사를 드립니다.

참고문헌

  1. Breaks, F.W. and Tindle, A.G. (1997) Rare element exploration potential of the Separation Lake area: An emerging target for Bikita-type mineralization in the Superior province of northwest Ontario. In: Ontario Geological Survey ed. Ontario Ministry of Northern Development and Mines, Toronto, p.72-88.
  2. Cho, D.L., Hong, S.H., Chwae, U., Lee, B.-J. and Choi, P.-Y. (1998) Geological report of the Goseong-Ganseong Sheet (1:50,000). KIGAM, 59p. (in Korean with English summary)
  3. Choi, S.-G. and Imai, N. (1985) Ni-Fe-Co arsenides and sulpharsenides from the Ulsan mine, Republic of Korea. Mining Geology, v.35. p.1-16. doi: 10.11456/shigenchishitsu1951.35.1
  4. Choi, S.G. and Wee, S.M. (1994) Petrochemical study of the Gadaeri granite in Ulsan area, Kyeongsang province. Economic and Environmental Geology, v.27, p.459-467.
  5. Choi, S.-G. and Youm, S.J. (2000) Compositional variation of arsenopyrite and fluid evolution at the Ulsan deposit, southeastern Korea; A low-sulfidation porphyry system. The Canadian Mineralogist, v.38, p.567-583. doi: 10.2113/gscanmin.38.3.567
  6. European Commission (2008) The raw materials initiative, https://ima-europe.eu/eu-policy/industrial-policy-and-circular-economy/raw-material-initiative/
  7. European Commission (2011) A list of 14 CRMs, Communication from the commission to the European Parliament, the Council, The European Economic and Social Committee and the Committee of the Regions Tackling the Challenges in Commodity Markets and on Raw Materials, https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52011DC0025.
  8. European Commission (2014) A first revised list of 20 CRMs, On the review of the list of critical raw materials for the EU and the implementation of the Raw Materials Initiative, Communication from the commission to the European Parliament, the Council, The European Economic and Social Committee and the Committee of the Regions, https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52014DC0297.
  9. European Commission (2017) A third list of 27 CRMs, on the 2017 list of Critical Raw Materials for the EU, Communication from the commission to the European Parliament, the Council, The European Economic and Social Committee and the Committee of the Regions, https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52017DC0490.
  10. European Commission (2022) Critical raw materials, https://single-market-economy.ec.europa.eu/sectors/raw-materials/areas-specific-interest/critical-raw-materials_en
  11. Executive Office of the President, USA (2017) A Federal Strategy to Ensure Secure and Reliable Supplies of Critical Minerals. Executive Office of the President, Washington, 50p.
  12. Gates, B. (2021) How to avoid a clamate disaster. Penguin Random House, New York, 356p.
  13. Hajjar, Z., Gervilla, F., Fanlo, I. Jimenez, J.-M.G. and Ilmen, S. (2021) Formation of serpentinite-hosted, Fe-rich arsenide ores at the latest stage of mineralization of the Bou-Azzer mining district (Morocco). Ore Geology Reviews, v.128, 103926. doi: 10.1016/j.oregeorev.2020.103926
  14. Heo, C.-H., Lee, J.-H., Yun, S.-T. and So, C.-S. (2006) Fluid Inclusion Study of a Magmatic Cobalt Mineralization at the Boguk Mine, Korea. The Korean Society of Mineral and Energy Resources Engineers, v.43, p.106-117.
  15. Jeon, C.H. (2021) Overweight of secondary battery, IBKS industry, Seoul, 92p.
  16. Kim, O.J. and Park, H.I. (1958) Geology and ore deposits of Sannae nickel mine at Toktongri, Sannae-myon, Namwon-gun, Chollapukto. Geological survey of Korea Bulletin, no.2, p.17-46.
  17. Kim, S.W., Kwon, S., Jeong, Y.-J., Kee, W.S., Lee, B.C., Byun, U.H., Ko, K., Cho, D.-L., Hong, P.S., Park, S.-I. and Santosh, M. (2021) The middle Permian to Triassic tectonic-magmatic system in the southern Korean Peninsula. Gondwana Res., v.100, p.302-322. doi: 10.1016/j.gr.2020.11.017
  18. Kim, S.Y., Seo, J.R., Yang, J.I. and Kim, S.B. (1991) Geology and Ore Deposits of Rare Elements in Hadong and Uljin Area, Korea. Korea Institute of Geology, Mining & Materials, Daejeon, Korea, 156p.
  19. Lee, H.K., Moon, H.S. and Oh, M.S. (2007) Economic mineral deposits in Korea. Acanet, Soeul, 750p.
  20. Internatioanl Energy Agency (2021) The Role of Critical Minerals in Clean Energy Transitions, 287p. doi: 10.1787/f262b91c-en
  21. Park, B.C. and Kim, J.D. (1968) Investigation report of tongyang nickel mine. Investigation Report of Mines Bulletin, no.1, p.81-116.
  22. Park, H.I. (1960) Report on drilling of the Sannae nickel mine at toktong-ri, Sannae-myon, Namwon-gun, Chollapuk-to. Geological Survey of Korea Bulletin, no.4, p.3-37.
  23. Park, M.E. (1990) Mineralization and Paragenesis of the Cobalt-bearing Sulfide and Arsenide Minerals in Gyeongsan Area. Geol. Soc. Korea, v.26, p.18-31.
  24. Song, Y.-S., Park, K.-H. and Kim, D.-Y. (2007) The Overview of Layered structures in Mafic-Ultramafic Macheon Intrusion. J. Petro. Soc. Korea, v.16, p.162-179.
  25. Statistics of Korea (2022) https://www.index.go.kr/unify/idx-info.do?idxCd=4288
  26. Yun, S.T. and Youm, S.J. (1997) Temporal variations of ore mineralogy and sulfur isotope data from the Boguk cobalt mine: Implication for genesis and geochemistry of Co-bearing hydrothermal system. Korean Soc. Econ. Environ. Geol., v.30, p.289-301.