DOI QR코드

DOI QR Code

The Role of Mitochondrial Biogenesis Dysfunction in Diabetic Cardiomyopathy

  • Tao, Li-Chan (The Third Affiliated Hospital of Soochow University) ;
  • Wang, Ting-ting (The Third Affiliated Hospital of Soochow University) ;
  • Zheng, Lu (The Third Affiliated Hospital of Soochow University) ;
  • Hua, Fei (The Third Affiliated Hospital of Soochow University) ;
  • Li, Jian-Jun (State Key Laboratory of Cardiovascular Diseases, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College)
  • Received : 2021.12.26
  • Accepted : 2022.02.22
  • Published : 2022.09.01

Abstract

Diabetic cardiomyopathy (DCM) is described as abnormalities of myocardial structure and function in diabetic patients without other well-established cardiovascular factors. Although multiple pathological mechanisms involving in this unique myocardial disorder, mitochondrial dysfunction may play an important role in its development of DCM. Recently, considerable progresses have suggested that mitochondrial biogenesis is a tightly controlled process initiating mitochondrial generation and maintaining mitochondrial function, appears to be associated with DCM. Nonetheless, an outlook on the mechanisms and clinical relevance of dysfunction in mitochondrial biogenesis among patients with DCM is not completely understood. In this review, hence, we will summarize the role of mitochondrial biogenesis dysfunction in the development of DCM, especially the molecular underlying mechanism concerning the signaling pathways beyond the stimulation and inhibition of mitochondrial biogenesis. Additionally, the evaluations and potential therapeutic strategies regarding mitochondrial biogenesis dysfunction in DCM is also presented.

Keywords

Acknowledgement

This research was funded by the National Natural Science Foundation of China (NSFC) grants 82170356, China Postdoctoral Science Foundation grant 2018M642317, Post-Doctoral Foundation of Jiangsu Province grant 2018K095B, Six Talent Peaks Project of Jiangsu Province grants WSN-202 and WSW-183, Changzhou Sci&Tech Program grant CJ20210091, Maternal and Child Health Research Project of Jiangsu Province grant F201803.

References

  1. Al Amir Dache, Z., Otandault, A., Tanos, R., Pastor, B., Meddeb, R., Sanchez, C., Arena, G., Lasorsa, L., Bennett, A., Grange, T., El Messaoudi, S., Mazard, T., Prevostel, C. and Thierry, A. R. (2020) Blood contains circulating cell-free respiratory competent mitochondria. FASEB J. 34, 3616-3630. https://doi.org/10.1096/fj.201901917RR
  2. Angus, L. M., Chakkalakal, J. V., Mejat, A., Eibl, J. K., Belanger, G., Megeney, L. A., Chin, E. R., Schaeffer, L., Michel, R. N. and Jasmin, B. J. (2005) Calcineurin-NFAT signaling, together with GABP and peroxisome PGC-1{alpha}, drives utrophin gene expression at the neuromuscular junction. Am. J. Physiol. Cell Physiol. 289, C908-C917. https://doi.org/10.1152/ajpcell.00196.2005
  3. Balaban, R. S. (1990) Regulation of oxidative phosphorylation in the mammalian cell. Am. J. Physiol. 258, C377-C389. https://doi.org/10.1152/ajpcell.1990.258.3.C377
  4. Berthiaume, J. M., Kurdys, J. G., Muntean, D. M. and Rosca, M. G. (2019) Mitochondrial NAD(+)/NADH redox state and diabetic cardiomyopathy. Antioxid. Redox. Signal. 30, 375-398. https://doi.org/10.1089/ars.2017.7415
  5. Biswas, M. and Chan, J. Y. (2010) Role of Nrf1 in antioxidant response element-mediated gene expression and beyond. Toxicol. Appl. Pharmacol. 244, 16-20. https://doi.org/10.1016/j.taap.2009.07.034
  6. Blesa, J. R., Prieto-Ruiz, J. A., Abraham, B. A., Harrison, B. L., Hegde, A. A. and Hernandez-Yago, J. (2008) NRF-1 is the major transcription factor regulating the expression of the human TOMM34 gene. Biochem. Cell Biol. 86, 46-56. https://doi.org/10.1139/O07-151
  7. Bordoni, L., Petracci, I., Pelikant-Malecka, I., Radulska, A., Piangerelli, M., Samulak, J. J., Lewicki, L., Kalinowski, L., Gabbianelli, R. and Olek, R. A. (2021) Mitochondrial DNA copy number and trimethylamine levels in the blood: new insights on cardiovascular disease biomarkers. FASEB J. 35, e21694.
  8. Bruggisser, J., Kaser, S., Mani, J. and Schneider, A. (2017) Biogenesis of a mitochondrial outer membrane protein in Trypanosoma brucei: targeting signal and dependence on a unique biogenesis factor. J. Biol. Chem. 292, 3400-3410. https://doi.org/10.1074/jbc.M116.755983
  9. Bruni, F., Polosa, P. L., Gadaleta, M. N., Cantatore, P. and Roberti, M. (2010) Nuclear respiratory factor 2 induces the expression of many but not all human proteins acting in mitochondrial DNA transcription and replication. J. Biol. Chem. 285, 3939-3948. https://doi.org/10.1074/jbc.M109.044305
  10. Cameron, R. B., Beeson, C. C. and Schnellmann, R. G. (2016) Development of therapeutics that induce mitochondrial biogenesis for the treatment of acute and chronic degenerative diseases. J. Med. Chem. 59, 10411-10434. https://doi.org/10.1021/acs.jmedchem.6b00669
  11. Cayci, T., Kurt, Y. G., Akgul, E. O. and Kurt, B. (2012) Does mtDNA copy number mean mitochondrial abundance? J. Assist. Reprod. Genet. 29, 855.
  12. Cook, G. A., Lavrentyev, E. N., Pham, K. and Park, E. A. (2017) Streptozotocin diabetes increases mRNA expression of ketogenic enzymes in the rat heart. Biochim. Biophys. Acta Gen. Subj. 1861, 307-312. https://doi.org/10.1016/j.bbagen.2016.11.012
  13. De Jong, K. A. and Lopaschuk, G. D. (2017) Complex energy metabolic changes in heart failure with preserved ejection fraction and heart failure with reduced ejection fraction. Can. J. Cardiol. 33, 860-871. https://doi.org/10.1016/j.cjca.2017.03.009
  14. Dillmann, W. H. (2019) Diabetic cardiomyopathy. Circ. Res. 124, 1160-1162. https://doi.org/10.1161/CIRCRESAHA.118.314665
  15. Fang, W. J., Wang, C. J., He, Y., Zhou, Y. L., Peng, X. D. and Liu, S. K. (2018) Resveratrol alleviates diabetic cardiomyopathy in rats by improving mitochondrial function through PGC-1α deacetylation. Acta Pharmacol. Sin. 39, 59-73. https://doi.org/10.1038/aps.2017.50
  16. Fernandez-Marcos, P. J. and Auwerx, J. (2011) Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am. J. Clin. Nutr. 93, 884s-890s. https://doi.org/10.3945/ajcn.110.001917
  17. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators (2016) Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1545-1602. https://doi.org/10.1016/S0140-6736(16)31678-6
  18. Gleyzer, N. and Scarpulla, R. C. (2016) Concerted action of PGC-1-related coactivator (PRC) and c-MYC in the stress response to mitochondrial dysfunction. J. Biol. Chem. 291, 25529-25541. https://doi.org/10.1074/jbc.M116.719682
  19. Golpich, M., Amini, E., Mohamed, Z., Azman Ali, R., Mohamed Ibrahim, N. and Ahmadiani, A. (2017) Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: pathogenesis and treatment. CNS Neurosci. Ther. 23, 5-22. https://doi.org/10.1111/cns.12655
  20. Habibi, J., Aroor, A. R., Sowers, J. R., Jia, G., Hayden, M. R., Garro, M., Barron, B., Mayoux, E., Rector, R. S., Whaley-Connell, A. and DeMarco, V. G. (2017) Sodium glucose transporter 2 (SGLT2) inhibition with empagliflozin improves cardiac diastolic function in a female rodent model of diabetes. Cardiovasc. Diabetol. 16, 9.
  21. Herzig, S., Long, F., Jhala, U. S., Hedrick, S., Quinn, R., Bauer, A., Rudolph, D., Schutz, G., Yoon, C., Puigserver, P., Spiegelman, B. and Montminy, M. (2001) CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413, 179-183. https://doi.org/10.1038/35093131
  22. Ji, H., Wang, J., Muid, D., Song, W., Jiang, Y. and Zhou, H. (2022) FUNDC1 activates the mitochondrial unfolded protein response to preserve mitochondrial quality control in cardiac ischemia/reperfusion injury. Cell. Signal. 92, 110249.
  23. Jia, G., Hill, M. A. and Sowers, J. R. (2018a) Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ. Res. 122, 624-638. https://doi.org/10.1161/CIRCRESAHA.117.311586
  24. Jia, G., Whaley-Connell, A. and Sowers, J. R. (2018b) Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia 61, 21-28. https://doi.org/10.1007/s00125-017-4390-4
  25. Kannel, W. B., Hjortland, M. and Castelli, W. P. (1974) Role of diabetes in congestive heart failure: the Framingham study. Am. J. Cardiol. 34, 29-34. https://doi.org/10.1016/0002-9149(74)90089-7
  26. Kannel, W. B. and McGee, D. L. (1979) Diabetes and cardiovascular disease. The Framingham study. JAMA 241, 2035-2038. https://doi.org/10.1001/jama.1979.03290450033020
  27. Karamanlidis, G., Nascimben, L., Couper, G. S., Shekar, P. S., del Monte, F. and Tian, R. (2010) Defective DNA replication impairs mitochondrial biogenesis in human failing hearts. Circ. Res. 106, 1541-1548. https://doi.org/10.1161/CIRCRESAHA.109.212753
  28. Kim, H. K., Ko, T. H., Song, I. S., Jeong, Y. J., Heo, H. J., Jeong, S. H., Kim, M., Park, N. M., Seo, D. Y., Kha, P. T., Kim, S. W., Lee, S. R., Cho, S. W., Won, J. C., Youm, J. B., Ko, K. S., Rhee, B. D., Kim, N., Cho, K. I., Shimizu, I., Minamino, T., Ha, N. C., Park, Y. S., Nilius, B. and Han, J. (2020) BH4 activates CaMKK2 and rescues the cardiomyopathic phenotype in rodent models of diabetes. Life Sci. Alliance 3, e201900619. https://doi.org/10.26508/lsa.201900619
  29. Knapp, M., Tu, X. and Wu, R. (2019) Vascular endothelial dysfunction, a major mediator in diabetic cardiomyopathy. Acta Pharmacol. Sin. 40, 1-8. https://doi.org/10.1038/s41401-018-0042-6
  30. Ko, T. H., Marquez, J. C., Kim, H. K., Jeong, S. H., Lee, S., Youm, J. B., Song, I. S., Seo, D. Y., Kim, H. J., Won, D. N., Cho, K. I., Choi, M. G., Rhee, B. D., Ko, K. S., Kim, N., Won, J. C. and Han, J. (2018) Resistance exercise improves cardiac function and mitochondrial efficiency in diabetic rat hearts. Pflugers Arch. 470, 263-275. https://doi.org/10.1007/s00424-017-2076-x
  31. Kosuru, R., Kandula, V., Rai, U., Prakash, S., Xia, Z. and Singh, S. (2018) Pterostilbene decreases cardiac oxidative stress and inflammation via activation of AMPK/Nrf2/HO-1 pathway in fructosefed diabetic rats. Cardiovasc. Drugs Ther. 32, 147-163. https://doi.org/10.1007/s10557-018-6780-3
  32. Kristensen, S. L., Rorth, R., Jhund, P. S., Docherty, K. F., Sattar, N., Preiss, D., Kober, L., Petrie, M. C. and McMurray, J. J. V. (2019) Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol. 7, 776-785. https://doi.org/10.1016/S2213-8587(19)30249-9
  33. Lam, C. S. (2015) Diabetic cardiomyopathy: an expression of stage B heart failure with preserved ejection fraction. Diab. Vasc. Dis. Res. 12, 234-238. https://doi.org/10.1177/1479164115579006
  34. Lee, H. C. and Wei, Y. H. (2000) Mitochondrial role in life and death of the cell. J. Biomed. Sci. 7, 2-15. https://doi.org/10.1007/BF02255913
  35. Li, N. and Zhou, H. (2020) SGLT2 Inhibitors: a novel player in the treatment and prevention of diabetic cardiomyopathy. Drug Des. Devel. Ther. 14, 4775-4788. https://doi.org/10.2147/DDDT.S269514
  36. Li, Y., Feng, Y. F., Liu, X. T., Li, Y. C., Zhu, H. M., Sun, M. R., Li, P., Liu, B. and Yang, H. (2021a) Songorine promotes cardiac mitochondrial biogenesis via Nrf2 induction during sepsis. Redox Biol. 38, 101771.
  37. Li, Y., Wei, X., Liu, S. L., Zhao, Y., Jin, S. and Yang, X. Y. (2021b) Salidroside protects cardiac function in mice with diabetic cardiomyopathy via activation of mitochondrial biogenesis and SIRT3. Phytother. Res. 35, 4579-4591. https://doi.org/10.1002/ptr.7175
  38. Liang, Q. and Kobayashi, S. (2016) Mitochondrial quality control in the diabetic heart. J. Mol. Cell. Cardiol. 95, 57-69. https://doi.org/10.1016/j.yjmcc.2015.12.025
  39. Liu, J., Zou, Y., Tang, Y., Xi, M., Xie, L., Zhang, Q. and Gong, J. (2016) Circulating cell-free mitochondrial deoxyribonucleic acid is increased in coronary heart disease patients with diabetes mellitus. J. Diabetes Investig. 7, 109-114. https://doi.org/10.1111/jdi.12366
  40. Liu, X. D., Li, Y. G., Wang, G. Y., Bi, Y. G., Zhao, Y., Yan, M. L., Liu, X., Wei, M., Wan, L. L. and Zhang, Q. Y. (2020) Metformin protects high glucose-cultured cardiomyocytes from oxidative stress by promoting NDUFA13 expression and mitochondrial biogenesis via the AMPK signaling pathway. Mol. Med. Rep. 22, 5262-5270. https://doi.org/10.3892/mmr.2020.11599
  41. Lorenzo-Almoros, A., Tunon, J., Orejas, M., Cortes, M., Egido, J. and Lorenzo, O. (2017) Diagnostic approaches for diabetic cardiomyopathy. Cardiovasc. Diabetol. 16, 28.
  42. Lu, S., Liao, Z., Lu, X., Katschinski, D. M., Mercola, M., Chen, J., Heller Brown, J., Molkentin, J. D., Bossuyt, J. and Bers, D. M. (2020) Hyperglycemia acutely increases cytosolic reactive oxygen species via O-linked GlcNAcylation and CaMKII activation in mouse ventricular myocytes. Circ. Res. 126, e80-e96.
  43. Ma, S., Feng, J., Zhang, R., Chen, J., Han, D., Li, X., Yang, B., Li, X., Fan, M., Li, C., Tian, Z., Wang, Y. and Cao, F. (2017) SIRT1 activation by resveratrol alleviates cardiac dysfunction via mitochondrial regulation in diabetic cardiomyopathy mice. Oxid. Med. Cell. Longev. 2017, 4602715.
  44. Malik, A. N. and Czajka, A. (2013) Is mitochondrial DNA content a potential biomarker of mitochondrial dysfunction? Mitochondrion 13, 481-492. https://doi.org/10.1016/j.mito.2012.10.011
  45. Marciniak, C., Marechal, X., Montaigne, D., Neviere, R. and Lancel, S. (2014) Cardiac contractile function and mitochondrial respiration in diabetes-related mouse models. Cardiovasc. Diabetol. 13, 118.
  46. Marso, S. P., Daniels, G. H., Brown-Frandsen, K., Kristensen, P., Mann, J. F., Nauck, M. A., Nissen, S. E., Pocock, S., Poulter, N. R., Ravn, L. S., Steinberg, W. M., Stockner, M., Zinman, B., Bergenstal, R. M. and Buse, J. B. (2016) Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 375, 311-322. https://doi.org/10.1056/NEJMoa1603827
  47. Melser, S., Lavie, J. and Benard, G. (2015) Mitochondrial degradation and energy metabolism. Biochim. Biophys. Acta 1853, 2812-2821. https://doi.org/10.1016/j.bbamcr.2015.05.010
  48. Momiyama, Y., Furutani, M., Suzuki, Y., Ohmori, R., Imamura, S., Mokubo, A., Asahina, T., Murata, C., Kato, K., Anazawa, S., Hosokawa, K., Atsumi, Y., Matsuoka, K., Kimura, M., Kasanuki, H., Ohsuzu, F. and Matsuoka, R. (2003) A mitochondrial DNA variant associated with left ventricular hypertrophy in diabetes. Biochem. Biophys. Res. Commun. 312, 858-864. https://doi.org/10.1016/j.bbrc.2003.10.195
  49. Momiyama, Y., Suzuki, Y., Ohtomo, M., Atsumi, Y., Matsuoka, K., Ohsuzu, F. and Kimura, M. (2002) Cardiac autonomic nervous dysfunction in diabetic patients with a mitochondrial DNA mutation: assessment by heart rate variability. Diabetes Care 25, 2308-2313. https://doi.org/10.2337/diacare.25.12.2308
  50. Moore, M. L., Park, E. A. and McMillin, J. B. (2003) Upstream stimulatory factor represses the induction of carnitine palmitoyltransferase-Ibeta expression by PGC-1. J. Biol. Chem. 278, 17263-17268. https://doi.org/10.1074/jbc.M210486200
  51. Murtaza, G., Virk, H. U. H., Khalid, M., Lavie, C. J., Ventura, H., Mukherjee, D., Ramu, V., Bhogal, S., Kumar, G., Shanmugasundaram, M. and Paul, T. K. (2019) Diabetic cardiomyopathy - a comprehensive updated review. Prog. Cardiovasc. Dis. 62, 315-326. https://doi.org/10.1016/j.pcad.2019.03.003
  52. Nakae, J., Cao, Y., Oki, M., Orba, Y., Sawa, H., Kiyonari, H., Iskandar, K., Suga, K., Lombes, M. and Hayashi, Y. (2008) Forkhead transcription factor FoxO1 in adipose tissue regulates energy storage and expenditure. Diabetes 57, 563-576. https://doi.org/10.2337/db07-0698
  53. Nauck, M. A., Meier, J. J., Cavender, M. A., Abd El Aziz, M. and Drucker, D. J. (2017) Cardiovascular actions and clinical outcomes with glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Circulation 136, 849-870. https://doi.org/10.1161/CIRCULATIONAHA.117.028136
  54. Nayor, M., Shah, R. V., Miller, P. E., Blodgett, J. B., Tanguay, M., Pico, A. R., Murthy, V. L., Malhotra, R., Houstis, N. E., Deik, A., Pierce, K. A., Bullock, K., Dailey, L., Velagaleti, R. S., Moore, S. A., Ho, J. E., Baggish, A. L., Clish, C. B., Larson, M. G., Vasan, R. S. and Lewis, G. D. (2020) Metabolic architecture of acute exercise response in middle-aged adults in the community. Circulation 142, 1905-1924. https://doi.org/10.1161/CIRCULATIONAHA.120.050281
  55. Neal, B., Perkovic, V., Matthews, D. R., Mahaffey, K. W., Fulcher, G., Meininger, G., Erondu, N., Desai, M., Shaw, W., Vercruysse, F., Yee, J., Deng, H. and de Zeeuw, D. (2017) Rationale, design and baseline characteristics of the CANagliflozin cardioVascular Assessment Study-Renal (CANVAS-R): a randomized, placebo-controlled trial. Diabetes Obes. Metab. 19, 387-393. https://doi.org/10.1111/dom.12829
  56. Packer, M. (2020) Autophagy-dependent and -independent modulation of oxidative and organellar stress in the diabetic heart by glucose-lowering drugs. Cardiovasc. Diabetol. 19, 62.
  57. Paolillo, S., Marsico, F., Prastaro, M., Renga, F., Esposito, L., De Martino, F., Di Napoli, P., Esposito, I., Ambrosio, A., Ianniruberto, M., Mennella, R., Paolillo, R. and Gargiulo, P. (2019) Diabetic cardiomyopathy: definition, diagnosis, and therapeutic implications. Heart Fail. Clin. 15, 341-347. https://doi.org/10.1016/j.hfc.2019.02.003
  58. Parim, B., Sathibabu Uddandrao, V. V. and Saravanan, G. (2019) Diabetic cardiomyopathy: molecular mechanisms, detrimental effects of conventional treatment, and beneficial effects of natural therapy. Heart Fail. Rev. 24, 279-299. https://doi.org/10.1007/s10741-018-9749-1
  59. Peng, X., Li, L., Zhang, M., Zhao, Q., Wu, K., Bai, R., Ruan, Y. and Liu, N. (2020) Sodium-glucose cotransporter 2 inhibitors potentially prevent atrial fibrillation by ameliorating ion handling and mitochondrial dysfunction. Front. Physiol. 11, 912.
  60. Peterson, L. R. and Gropler, R. J. (2020) Metabolic and molecular imaging of the diabetic cardiomyopathy. Circ. Res. 126, 1628-1645. https://doi.org/10.1161/CIRCRESAHA.120.315899
  61. Ploumi, C., Daskalaki, I. and Tavernarakis, N. (2017) Mitochondrial biogenesis and clearance: a balancing act. FEBS J. 284, 183-195. https://doi.org/10.1111/febs.13820
  62. Popov, L. D. (2020) Mitochondrial biogenesis: an update. J. Cell. Mol. Med. 24, 4892-4899. https://doi.org/10.1111/jcmm.15194
  63. Qiu, C., Hevner, K., Abetew, D., Sedensky, M., Morgan, P., Enquobahrie, D. A. and Williams, M. A. (2013) Mitochondrial DNA copy number and oxidative DNA damage in placental tissues from gestational diabetes and control pregnancies: a pilot study. Clin. Lab. 59, 655-660.
  64. Quan, Y., Xin, Y., Tian, G., Zhou, J. and Liu, X. (2020) Mitochondrial ROS-modulated mtDNA: a potential target for cardiac aging. Oxid. Med. Cell. Longev. 2020, 9423593.
  65. Reaven, P. D., Emanuele, N. V., Wiitala, W. L., Bahn, G. D., Reda, D. J., McCarren, M., Duckworth, W. C. and Hayward, R. A. (2019) Intensive glucose control in patients with type 2 diabetes - 15-year follow-up. N. Engl. J. Med. 380, 2215-2224. https://doi.org/10.1056/NEJMoa1806802
  66. Riehle, C. and Bauersachs, J. (2018) Of mice and men: models and mechanisms of diabetic cardiomyopathy. Basic Res. Cardiol. 114, 2.
  67. Sakamoto, T., Matsuura, T. R., Wan, S., Ryba, D. M., Kim, J. U., Won, K. J., Lai, L., Petucci, C., Petrenko, N., Musunuru, K., Vega, R. B. and Kelly, D. P. (2020) A critical role for estrogen-related receptor signaling in cardiac maturation. Circ. Res. 126, 1685-1702. https://doi.org/10.1161/CIRCRESAHA.119.316100
  68. Satoh, J., Kawana, N. and Yamamoto, Y. (2013) Pathway analysis of ChIP-Seq-based NRF1 target genes suggests a logical hypothesis of their involvement in the pathogenesis of neurodegenerative diseases. Gene Regul. Syst. Bio. 7, 139-152.
  69. Scheen, A. J. (2018) Cardiovascular effects of new oral glucose-lowering agents: DPP-4 and SGLT-2 inhibitors. Circ. Res. 122, 1439-1459. https://doi.org/10.1161/CIRCRESAHA.117.311588
  70. Shao, Q., Meng, L., Lee, S., Tse, G., Gong, M., Zhang, Z., Zhao, J., Zhao, Y., Li, G. and Liu, T. (2019) Empagliflozin, a sodium glucose co-transporter-2 inhibitor, alleviates atrial remodeling and improves mitochondrial function in high-fat diet/streptozotocin-induced diabetic rats. Cardiovasc. Diabetol. 18, 165.
  71. Shen, X., Zheng, S., Thongboonkerd, V., Xu, M., Pierce, W. M., Jr., Klein, J. B. and Epstein, P. N. (2004) Cardiac mitochondrial damage and biogenesis in a chronic model of type 1 diabetes. Am. J. Physiol. Endocrinol. Metab. 287, E896-E905. https://doi.org/10.1152/ajpendo.00047.2004
  72. Sun, W., Quan, N., Wang, L., Yang, H., Chu, D., Liu, Q., Zhao, X., Leng, J. and Li, J. (2016) Cardiac-specific deletion of the Pdha1 gene sensitizes heart to toxicological actions of ischemic stress. Toxicol. Sci. 153, 411.
  73. Taherzadeh-Fard, E., Saft, C., Akkad, D. A., Wieczorek, S., Haghikia, A., Chan, A., Epplen, J. T. and Arning, L. (2011) PGC-1alpha downstream transcription factors NRF-1 and TFAM are genetic modifiers of Huntington disease. Mol. Neurodegener. 6, 32.
  74. Takada, S., Masaki, Y., Kinugawa, S., Matsumoto, J., Furihata, T., Mizushima, W., Kadoguchi, T., Fukushima, A., Homma, T., Takahashi, M., Harashima, S., Matsushima, S., Yokota, T., Tanaka, S., Okita, K. and Tsutsui, H. (2016) Dipeptidyl peptidase-4 inhibitor improved exercise capacity and mitochondrial biogenesis in mice with heart failure via activation of glucagon-like peptide-1 receptor signalling. Cardiovasc. Res. 111, 338-347. https://doi.org/10.1093/cvr/cvw182
  75. Tanajak, P., Sa-Nguanmoo, P., Sivasinprasasn, S., Thummasorn, S., Siri-Angkul, N., Chattipakorn, S. C. and Chattipakorn, N. (2018) Cardioprotection of dapagliflozin and vildagliptin in rats with cardiac ischemia-reperfusion injury. J. Endocrinol. 236, 69-84. https://doi.org/10.1530/JOE-17-0457
  76. Tao, L., Huang, X., Xu, M., Yang, L. and Hua, F. (2020) MiR-144 protects the heart from hyperglycemia-induced injury by regulating mitochondrial biogenesis and cardiomyocyte apoptosis. FASEB J. 34, 2173-2197. https://doi.org/10.1096/fj.201901838R
  77. Thirupathi, A. and de Souza, C. T. (2017) Multi-regulatory network of ROS: the interconnection of ROS, PGC-1 alpha, and AMPK-SIRT1 during exercise. J. Physiol. Biochem. 73, 487-494. https://doi.org/10.1007/s13105-017-0576-y
  78. Ueno, H. and Shiotani, H. (1999) Cardiac abnormalities in diabetic patients with mutation in the mitochondrial tRNA(Leu(UUR)) gene. Jpn. Circ. J. 63, 877-880. https://doi.org/10.1253/jcj.63.877
  79. Vafai, S. B. and Mootha, V. K. (2012) Mitochondrial disorders as windows into an ancient organelle. Nature 491, 374-383. https://doi.org/10.1038/nature11707
  80. Veeranki, S., Givvimani, S., Kundu, S., Metreveli, N., Pushpakumar, S. and Tyagi, S. C. (2016) Moderate intensity exercise prevents diabetic cardiomyopathy associated contractile dysfunction through restoration of mitochondrial function and connexin 43 levels in db/db mice. J. Mol. Cell. Cardiol. 92, 163-173. https://doi.org/10.1016/j.yjmcc.2016.01.023
  81. Verma, S., McGuire, D. K., Bain, S. C., Bhatt, D. L., Leiter, L. A., Mazer, C. D., Monk Fries, T., Pratley, R. E., Rasmussen, S., Vrazic, H., Zinman, B. and Buse, J. B. (2020) Effects of glucagon-like peptide-1 receptor agonists liraglutide and semaglutide on cardiovascular and renal outcomes across body mass index categories in type 2 diabetes: results of the LEADER and SUSTAIN 6 trials. Diabetes Obes. Metab. 22, 2487-2492. https://doi.org/10.1111/dom.14160
  82. Wang, H., Bei, Y., Lu, Y., Sun, W., Liu, Q., Wang, Y., Cao, Y., Chen, P., Xiao, J. and Kong, X. (2015) Exercise prevents cardiac injury and improves mitochondrial biogenesis in advanced diabetic cardiomyopathy with PGC-1α and Akt activation. Cell. Physiol. Biochem. 35, 2159-2168. https://doi.org/10.1159/000374021
  83. Wiviott, S. D., Raz, I., Bonaca, M. P., Mosenzon, O., Kato, E. T., Cahn, A., Silverman, M. G., Zelniker, T. A., Kuder, J. F., Murphy, S. A., Bhatt, D. L., Leiter, L. A., McGuire, D. K., Wilding, J. P. H., Ruff, C. T., Gause-Nilsson, I. A. M., Fredriksson, M., Johansson, P. A., Langkilde, A. M. and Sabatine, M. S. (2019) Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 380, 347-357. https://doi.org/10.1056/NEJMoa1812389
  84. Xiong, Y., Hai, C. X., Fang, W. J., Lei, Y. P., Li, X. M. and Zhou, X. K. (2020) Endogenous asymmetric dimethylarginine accumulation contributes to the suppression of myocardial mitochondrial biogenesis in type 2 diabetic rats. Nutr. Metab. 17, 72.
  85. Xiong, Y., He, Y. L., Li, X. M., Nie, F. and Zhou, X. K. (2021) Endogenous asymmetric dimethylarginine accumulation precipitates the cardiac and mitochondrial dysfunctions in type 1 diabetic rats. Eur. J. Pharmacol. 902, 174081.
  86. Yan, W., Zhang, H., Liu, P., Wang, H., Liu, J., Gao, C., Liu, Y., Lian, K., Yang, L., Sun, L., Guo, Y., Zhang, L., Dong, L., Lau, W. B., Gao, E., Gao, F., Xiong, L., Wang, H., Qu, Y. and Tao, L. (2013) Impaired mitochondrial biogenesis due to dysfunctional adiponectin-AMPK-PGC-1α signaling contributing to increased vulnerability in diabetic heart. Basic Res. Cardiol. 108, 329.
  87. Yang, Z. F., Drumea, K., Mott, S., Wang, J. and Rosmarin, A. G. (2014) GABP transcription factor (nuclear respiratory factor 2) is required for mitochondrial biogenesis. Mol. Cell. Biol. 34, 3194-3201. https://doi.org/10.1128/MCB.00492-12
  88. Yao, K., Zhang, W. W., Yao, L., Yang, S., Nie, W. and Huang, F. (2016) Carvedilol promotes mitochondrial biogenesis by regulating the PGC-1/TFAM pathway in human umbilical vein endothelial cells (HUVECs). Biochem. Biophys. Res. Commun. 470, 961-966. https://doi.org/10.1016/j.bbrc.2016.01.089
  89. Yu, L. M., Dong, X., Xue, X. D., Xu, S., Zhang, X., Xu, Y. L., Wang, Z. S., Wang, Y., Gao, H., Liang, Y. X., Yang, Y. and Wang, H. S. (2021) Melatonin attenuates diabetic cardiomyopathy and reduces myocardial vulnerability to ischemia-reperfusion injury by improving mitochondrial quality control: role of SIRT6. J. Pineal Res. 70, e12698.
  90. Yurista, S. R., Sillje, H. H. W., Rienstra, M., de Boer, R. A. and Westenbrink, B. D. (2020) Sodium-glucose co-transporter 2 inhibition as a mitochondrial therapy for atrial fibrillation in patients with diabetes? Cardiovasc. Diabetol. 19, 5.
  91. Zhang, M., Lin, J., Wang, S., Cheng, Z., Hu, J., Wang, T., Man, W., Yin, T., Guo, W., Gao, E., Reiter, R. J., Wang, H. and Sun, D. (2017) Melatonin protects against diabetic cardiomyopathy through Mst1/Sirt3 signaling. J. Pineal Res. 63, e12418.
  92. Zhang, X., Zhang, Z., Yang, Y., Suo, Y., Liu, R., Qiu, J., Zhao, Y., Jiang, N., Liu, C., Tse, G., Li, G. and Liu, T. (2018) Alogliptin prevents diastolic dysfunction and preserves left ventricular mitochondrial function in diabetic rabbits. Cardiovasc. Diabetol. 17, 160.
  93. Zhang, Z., Zhang, X., Meng, L., Gong, M., Li, J., Shi, W., Qiu, J., Yang, Y., Zhao, J., Suo, Y., Liang, X., Wang, X., Tse, G., Jiang, N., Li, G., Zhao, Y. and Liu, T. (2021) Pioglitazone inhibits diabetes-induced atrial mitochondrial oxidative stress and improves mitochondrial biogenesis, dynamics, and function through the PPAR-γ/PGC-1α signaling pathway. Front. Pharmacol. 12, 658362.
  94. Zhou, L., Yu, M., Arshad, M., Wang, W., Lu, Y., Gong, J., Gu, Y., Li, P. and Xu, L. (2018) Coordination among lipid droplets, peroxisomes, and mitochondria regulates energy expenditure through the CIDE-ATGL-PPARα pathway in adipocytes. Diabetes 67, 1935-1948. https://doi.org/10.2337/db17-1452
  95. Zinman, B., Inzucchi, S. E., Lachin, J. M., Wanner, C., Ferrari, R., Fitchett, D., Bluhmki, E., Hantel, S., Kempthorne-Rawson, J., Newman, J., Johansen, O. E., Woerle, H. J. and Broedl, U. C. (2014) Rationale, design, and baseline characteristics of a randomized, placebo-controlled cardiovascular outcome trial of empagliflozin (EMPA-REG OUTCOMETM). Cardiovasc. Diabetol. 13, 102.