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COMPUTATION OF SOMBOR INDICES OF

OTIS(BISWAPPED) NETWORKS

B. Basavanagoud* and Goutam Veerapur

Abstract. In this paper, we derive analytical closed results for
the first (a, b)-KA index, the Sombor index, the modified Sombor
index, the first reduced (a, b)-KA index, the reduced Sombor index,
the reduced modified Sombor index, the second reduced (a, b)-KA
index and the mean Sombor index mSOα for the OTIS biswapped
networks by considering basis graphs as path, wheel graph, com-
plete bipartite graph and r−regular graphs. Network theory plays
a significant role in electronic and electrical engineering, such as
signal processing, networking, communication theory, and so on. A
topological index (TI) is a real number associated with graph net-
works that correlates chemical networks with a variety of physical
and chemical properties as well as chemical reactivity. The Opti-
cal Transpose Interconnection System (OTIS) network has recently
received increased interest due to its potential uses in parallel and
distributed systems.

1. Introduction

Cheminformatics is a new discipline of study that merges the scientific
subjects of chemistry, information science, mathematics, and computer
science. The quantitative structure-property relationship (QSPR) and
quantitative structure-activity relationship (QSAR) are important as-
pects of cheminformatics that aid in the study of chemical compounds

Received January 31, 2022; Accepted June 29, 2022.
2010 Mathematics Subject Classification: Primary 05C07, 05C09; Secondary

05C90, 68R10.
Key words and phrases: Topological indices, vertex degree, edge partition, r −

regular graphs, optical transpose interconnection system (OTIS) networks.
This work was supported by Karnatak University, Dharwad, Karnataka India,

through University Research Studentship (URS), No.KU.40(SC/ST)sch/URS/2020-
21/44/533, dated 12.12.2020.
∗Correspondence should be addressed to b.basavanagoud@gmail.com.



206 B. Basavanagoud and Goutam Veerapur

physicochemical properties. A topological index is a numeric value as-
sociated with a chemical compounds graph that describes its topology
while being invariant under graph automorphism. In the study of struc-
tural chemistry, graph theory has a wide range of applications. Wiener’s
[17] investigation of paraffin boiling points was the first well-known ap-
plication of a topological index in chemistry. Following that, numerous
topological indices were introduced and explored in attempt to explain
physicochemical features see [5, 22]. Also, numerous application of graph
theory can be found in networking see [1, 6, 7, 13, 16].

Optical transpose interconnection system (OTIS) networks were de-
signed to provide efficient connectivity for new optoelectronic computer
architectures that took advantage of both optical and electronic tech-
nologies [14]. In OTIS networks, processors are organized into clusters.
Electronic interconnects are utilised between processors within the same
cluster, while optical links are utilised for intercluster communication.
Numerous algorithms have been devised for routing, selection/sorting
[10, 12, 18, 19], certain numerical computations [11], fourier transform
[2], matrix multiplication [20] and image processing [21]. The struc-
ture of an interconnection network can be mathematically modeled by
a graph. The vertices of this graph represent the processor nodes and
the edges represent the links between the processors. The topology of
a graph determines the way in which vertices are connected by edges.
Certain aspects of a network may be easily identified from its topology.
The greatest distance between any two nodes in the network determines
the diameter. The degree of a node is determined by the number of links
that connect to it. The network is said to be regular if this number is
the same for all nodes. In this paper, G is considered to be a simple
graph with V as vertex set and E as edge set and |V | = n, |E| = m.
The degree dv of a vertex v ∈ V (G) is the number of edges incident to
it in G.

Definition 1. [1] For a base graph Ω, the biswapped interconnection
network Bsw(Ω) is a graph with vertex set and edge set specified as:
V (Bsw(Ω)) = {〈0, p, g〉, 〈1, p, g〉|p, g ∈ V (Ω)}
E(Bsw(Ω)) = {(〈0, p, g1〉, 〈0, p, g2〉) , (〈1, p, g1〉, 〈1, p, g2〉) |(g1, g2) ∈ E(Ω), p ∈
V (Ω)} ∪ {〈0, p, g〉, 〈1, g, p〉|p, g ∈ V (Ω)}.
The vertex and edge set cardinalities of biswapped network Bsw(Ω) are
2n2 and 2n|E(Ω)|+n2 respectively, where n is the number of vertices in
Ω. Figure 1 shows a biswapped network of star graph K1,3 as the basis
graph.
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Figure 1. Biswapped network K1,3

The sombor index was introduced by I. Gutman [8] to be described as

SO(G) =
∑

uv∈E(G)

√
dG(u)2 + dG(v)2.

The following indices are introduced by V. R. Kulli and I. Gutman [13].
The modified Sombor index of a graph G was [13] defined as

mSO(G) =
∑

uv∈E(G)

1√
dG(u)2 + dG(v)2

.

The first (a, b)-KA index of a graph G was [13] defined as

KA1
a,b(G) =

∑
uv∈E(G)

[dG(u)a + dG(v)a]b.(1.1)

The reduced Sombor index of a graph G [8] was defined as

RSO(G) =
∑

uv∈E(G)

√
(dG(u)− 1)2 + (dG(v)− 1)2.

The reduced modified Sombor index of a graph G was [13] defined as

mRSO(G) =
∑

uv∈E(G)

1√
(dG(u)− 1)2 + (dG(v)− 1)2

.
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The first and second reduced (a, b)-KA indices of a graph G [13] were
defined as

RKA1
a,b(G) =

∑
uv∈E(G)

[
(dG(u)− 1)a + (dG(v)− 1)a

]b
(1.2)

RKA2
a,b(G) =

∑
uv∈E(G)

[
(dG(u)− 1)a · (dG(v)− 1)a

]b
.

The mean Sombor index of a graph G was [15] defined as

mSOα(G) =
∑

uv∈E(G)

(
dG(u)α + dG(v)α

2

) 1
α

(1.3)

where α ∈ R\0.

Table 1. [15] Expressions for the mean Sombor index
mSOα(G) for selected values of α

α mSOα(G) Index Equivalence
−∞ mSOα→−∞(G) =

∑
uv∈E(G)min(dG(u), dG(v)) SPα→−∞(G)

−1 mSO−1(G) =
∑

uv∈E(G)
2dG(u)dG(v)
dG(u)+dG(v)

2ISI(G)

0 mSOα→0(G) =
∑

uv∈E(G)

√
dG(u)dG(v) R−1(G)

1
2 mSO 1

2
(G) =

∑
uv∈E(G)

(√
dG(u)+

√
dG(v)

2

)2

2−2KA1
1
2
,2

(G)

1 mSO1(G) =
∑

uv∈E(G)
dG(u)+dG(v)

2 2−1M1(G)

2 mSO2(G) =
∑

uv∈E(G)

(
dG(u)

2+dG(v)
2

2

) 1
2

2−
1
2SO(G)

3 mSO3(G) =
∑

uv∈E(G)

(
dG(u)

3+dG(v)
3

2

) 1
3

2−
1
3KA1

3, 1
3

(G)

∞ mSOα→∞(G) =
∑

uv∈E(G)max(dG(u), dG(v)) SPα→∞(G)

2. Methodology

There are three kinds of invariants:

1. Degree-based TIs
2. Distance-based TIs
3. Spectral-based TIs
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In this paper, we concentrate on degree-based graph invariants. We
partition the edge set of graph networks into classes depending on the
degree of the end vertices and compute their cardinality to compute
degree-based invariants. We compute our desired outcomes using this
edge partition.

3. Computational results

In this section, we compute the first (a, b)-KA index, the Sombor
index, the modified Sombor index, the first reduced (a, b)-KA index, the
reduced Sombor index, the reduced modified Sombor index, the second
reduced (a, b)-KA index and the mean Sombor index mSOα for the
OTIS biswapped networks by considering basis graphs as path, wheel
graph, complete bipartite graph and r − regular graphs.

3.1. Results for biswapped networks Bsw(Pn)

Let Pn be path on the n vertices and Bsw(Pn) be the biswapped
network with the basis network Pn [1]. The number of vertices and
edges in Bsw(Pn) are 2n2 and 3n2 − 2n respectively. Figure 2 shows a
OTIS biswapped network of path P4 as the basis graph.

bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bcbc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc

bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bcbc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc

bc bc bc bcbc bc bc bc

000 001 002 003 010 011 012 013 020 021 022 023 030 031 032 033

100 101 102 103 110 111 112 113 120 121 122 123 130 131 132 133

Bsw(P4) :

P4 :

Figure 2. Biswapped network Bsw(P4)

Table 2. The edge partition of the graph Bsw(Pn)

(du, dv) where uv ∈ E(Bsw(Pn)) (2, 2) (2, 3) (3, 3)
Number of edges 4 8(n− 1) 3n2 − 10n+ 4

Theorem 3.1. The first (a, b)-KA index of biswapped networkBsw(Pn)
with basis network Pn is given by

KA1
a,b(Bsw(Pn)) = 2b+ab+2 + 8(n− 1)(2a + 3a)b + (3n2− 10n+ 4)2b3ab.
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Proof. By definition and by using Table 2, we deduce

KA1
a,b(Bsw(Pn)) =

∑
uv∈E(G)

[dG(u)a + dG(v)a]b

= 4(2a + 2a)b + 8(n− 1)(2a + 3a)b

+(3n2 − 10n+ 4)(3a + 3a)b

= 4(2× 2a)b + 8(n− 1)(2a + 3a)b

+(3n2 − 10n+ 4)(2× 3a)b

= 2b+ab+2 + 8(n− 1)(2a + 3a)b

+(3n2 − 10n+ 4)2b3ab.

From Theorem 3.1, we obtain the following results.

Corollary 3.2. The Sombor index of Bsw(Pn) is

SO(Bsw(Pn)) = 8
√

2 + 8
√

13(n− 1) + 3
√

2(3n2 − 10n+ 4).

Corollary 3.3. The modified Sombor index of Bsw(Pn) is

mSO(Bsw(Pn)) =
3n2 − 10(n− 1)

3
√

2
+

8(n− 1)√
13

.

Theorem 3.4. The first reduced (a, b)-KA index of biswapped net-
work Bsw(Pn) with basis network Pn is given by

RKA1
a,b(Bsw(Pn)) = 2b+21a+8(n−1)(1a+2a)b+(3n2−10n+4)2b(a+1).

Proof. By definition and by using Table 2, we deduce

RKA1
a,b(Bsw(Pn)) =

∑
uv∈E(G)

[
(dG(u)− 1)a + (dG(v)− 1)a

]b
= 4((2− 1)a + (2− 1)a)b

+8(n− 1)
(
(2− 1)a + (3− 1)a

)b
+(3n2 − 10n+ 4)(2a + 2a)b

= 2b+21a + 8(n− 1)(1a + 2a)b

+(3n2 − 10n+ 4)2b(a+1).

From Theorem 3.4, we establish the following results.
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Corollary 3.5. The reduced Sombor index of Bsw(Pn) is

RSO(Bsw(Pn)) = 4
√

2 + 8
√

5(n− 1) + 2
√

2(3n2 − 10n+ 4).

Corollary 3.6. The reduced modified Sombor index of Bsw(Pn) is

mRSO(Bsw(Pn)) =
10
√

2 + 8
√

5(n− 1)

5
+

√
2(3n2 − 10n+ 4)

4
.

Theorem 3.7. The second reduced (a, b)-KA index of biswapped
network Bsw(Pn) with basis network Pn is given by

RKA2
a,b(Bsw(Pn)) = (3n2 − 10n+ 4)22ab + 2ab+31ab(n− 1) + 4(1)2ab.

Proof. By definition and by using Table 2, we deduce

RKA2
a,b(Bsw(Pn)) =

∑
uv∈E(G)

[
(dG(u)− 1)a · (dG(v)− 1)a

]b
= 4((2− 1)a · (2− 1)a)b

+8(n− 1)
(
(2− 1)a · (3− 1)a

)b
+(3n2 − 10n+ 4)(2a · 2a)b

= (3n2 − 10n+ 4)22ab

+2ab+31ab(n− 1) + 4(1)2ab.

Theorem 3.8. The mean Sombor index of biswapped networkBsw(Pn)
with basis network Pn is given by

mSOα(Bsw(Pn)) = 9n2 − 30n+ 20 + 8(n− 1)

(
2α + 3α

2

) 1
α

.

Proof. By definition and by using Table 2, we deduce

mSOα(Bsw(Pn)) =
∑

uv∈E(G)

(
dG(u)α + dG(v)α

2

) 1
α

= 4

(
2α + 2α

2

) 1
α

+ 8(n− 1)

(
2α + 3α

2

) 1
α

+(3n2 − 10n+ 4)

(
3α + 3α

2

) 1
α

= 9n2 − 30n+ 20 + 8(n− 1)

(
2α + 3α

2

) 1
α

.
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3.2. Results for biswapped networks Bsw(Wn)

Definition 2. [9] For n ≥ 4, the wheel graph Wn is defined to be
the graph K1 + Cn−1.

Let Wn be wheel graph on the n vertices and Bsw(Wn) [3] be the OTIS
biswapped network with the basis network Wn. The number of vertices
and edges in Bsw(Wn) are 2n2 and 5n2−4n respectively. Figure 3 shows
a biswapped network of wheel W5 as the basis graph.
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Figure 3. Biswapped network Bsw(W5)

Table 3. The edge partition of the graph Bsw(Wn)

(du, dv) where uv ∈ E(Bsw(Wn)) (4, 4) (4, n) (n, n)
Number of edges (3n2 − 4n+ 1) 2(n2 − 1) 1

Theorem 3.9. The first (a, b)-KA index of biswapped networkBsw(Wn)
with basis network Wn is given by

KA1
a,b(Bsw(Wn)) = 2b(1+2a)(3n2−4n+ 1) + 2(n2−1)(4a+na)b+ 2bnab.
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Proof. By definition and by using Table 3, we deduce

KA1
a,b(Bsw(Wn)) =

∑
uv∈E(G)

[dG(u)a + dG(v)a]b

= (3n2 − 4n+ 1)(4a + 4a)b + 2(n2 − 1)(4a + na)b

+(na + na)b

= (3n2 − 4n+ 1)(2× 4a)b + 2(n2 − 1)(4a + na)b

+(2× na)b

= 2b(1+2a)(3n2 − 4n+ 1) + 2(n2 − 1)(4a + na)b

+2bnab.

From Theorem 3.9, we obtain the following results.

Corollary 3.10. The sombor index of Bsw(Wn) is

SO(Bsw(Wn)) = 4
√

2(3n2 − 4n+ 1) + 2(n2 − 1)
√
n2 + 16 + n

√
2.

Corollary 3.11. The modified Sombor index of Bsw(Wn) is

mSO(Bsw(Wn)) =
3n2 − 4n+ 1

4
√

2
+

2(n2 − 1)√
n2 + 16

+
1

n
√

2
.

Theorem 3.12. The first reduced (a, b)-KA index of biswapped net-
work Bsw(Wn) with basis network Wn is given by

RKA1
a,b(Bsw(Wn)) = 2b3ab(3n2−4n+1)+2(n2−1)(3a+(n−1)a)b+2b(n−1)ab.

Proof. By definition and by using Table 3, we deduce

RKA1
a,b(Bsw(Wn)) =

∑
uv∈E(G)

[
(dG(u)− 1)a + (dG(v)− 1)a

]b
= (3n2 − 4n+ 1)(3a + 3a)b + 2(n2 − 1)(3a + (n− 1)a)b

+((n− 1)a + (n− 1)a)b

= (3n2 − 4n+ 1)(2× 3a)b + 2(n2 − 1)(3a + (n− 1)a)b

+(2× (n− 1)a)b

= 2b3ab(3n2 − 4n+ 1) + 2(n2 − 1)(3a + (n− 1)a)b

+2b(n− 1)ab.

From Theorem 3.12, we establish the following results.
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Corollary 3.13. The reduced Sombor index of Bsw(Wn) is

RSO(Bsw(Wn)) = 3
√

2(3n2−4n+1)+2
√
n2 − 2n+ 10(n2−1)+(n−1)

√
2.

Corollary 3.14. The reduced modified Sombor index of Bsw(Wn)
is

mRSO(Bsw(Wn)) =
(n− 1)

√
2(3n2 − 4n+ 1) + 3

√
2

6(n− 1)
+

2(n2 − 1)√
n2 − 2n+ 10

.

Theorem 3.15. The second reduced (a, b)-KA index of biswapped
network Bsw(Wn) with basis network Wn is given by

RKA2
a,b(Bsw(Wn)) = 32ab(3n2−4n+1)+2(3ab)(n2−1)(n−1)ab+(n−1)2ab.

Proof. By definition and by using Table 3, we deduce

RKA2
a,b(Bsw(Wn)) =

∑
uv∈E(G)

[
(dG(u)− 1)a · (dG(v)− 1)a

]b
= (3n2 − 4n+ 1)(3a · 3a)b + 2(n2 − 1)(3a · (n− 1)a)b

+((n− 1)a · (n− 1)a)b

= 32ab(3n2 − 4n+ 1) + 2(3ab)(n2 − 1)(n− 1)ab

+(n− 1)2ab.

Theorem 3.16. The mean Sombor index of biswapped networkBsw(Wn)
with basis network Wn is given by

mSOα(Bsw(Wn)) = 12n2 − 15n+ 4 + 2(n2 − 1)

(
4α + nα

2

) 1
α

.

Proof. By definition and by using Table 3, we deduce

mSOα(Bsw(Wn)) =
∑

uv∈E(G)

(
dG(u)α + dG(v)α

2

) 1
α

= (3n2 − 4n+ 1)

(
4α + 4α

2

) 1
α

+2(n2 − 1)

(
4α + nα

2

) 1
α

+

(
nα + nα

2

) 1
α

= 12n2 − 15n+ 4 + 2(n2 − 1)

(
4α + nα

2

) 1
α

.
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3.3. Results for biswapped networks Bsw(Kr,s)

Definition 3. [4] A complete bipartite graph with partite sets V1
and V2, where |V1| = r and |V2| = s, is then denoted by K(r, s) or more
commonly Kr,s. The graph K1,s is called a star.

Let Kr,s be complete bipartite graph on the r+s vertices and Bsw(Kr,s)
[3] be the biswapped network with the basis network Kr,s. The numbers
of vertices and edges in Bsw(Kr,s) are 2n2 and 2nm + n2 respectively,
where n = r + s and m = rs. Figure 4 shows a biswapped network of
complete bipartite K2,3 as the basis graph.
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Figure 4. Biswapped network Bsw(K2,3)

Theorem 3.17. The first (a, b)-KA index of biswapped networkBsw(Kr,s)
with basis network Kr,s is given by

KA1
a,b(Bsw(Kr,s)) = 2rs(r+s+1)

(
(r+1)a+(s+1)a

)b
+r22b(s+1)ab+s22b(r+1)ab.
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Table 4. The edge partition of the graph Bsw(Kr,s)

(du, dv) where uv ∈ E(Bsw(Kr,s)) (r + 1, s+ 1) (s+ 1, s+ 1) (r + 1, r + 1)
Number of edges 2rs(r + s+ 1) r2 s2

Proof. By definition and by using Table 4, we deduce

KA1
a,b(Bsw(Kr,s)) =

∑
uv∈E(G)

[dG(u)a + dG(v)a]b

= 2rs(r + s+ 1)
(
(r + 1)a + (s+ 1)a

)b
+r2

(
(s+ 1)a + (s+ 1)a

)b
+s2

(
(r + 1)a + (r + 1)a

)b
= 2rs(r + s+ 1)

(
(r + 1)a + (s+ 1)a

)b
+r2

(
2× (s+ 1)a

)b
+s2

(
2× (r + 1)a

)b
= 2rs(r + s+ 1)

(
(r + 1)a + (s+ 1)a

)b
+r22b(s+ 1)ab + s22b(r + 1)ab.

From Theorem 3.17, we obtain the following results.

Corollary 3.18. The sombor index of Bsw(Kr,s) is

SO(Bsw(Kr,s)) = 2rs(r+s+1)
√
r2 + s2 + 2(r + s+ 1)+r2

√
2(s+1)+s2

√
2(r+1).

Corollary 3.19. The modified Sombor index of Bsw(Kr,s) is

mSO(Bsw(Kr,s)) =
2rs(r + s+ 1)√

r2 + s2 + 2(r + s+ 1)
+

√
2
(
r2(r + 1) + s2(s+ 1)

)
2(r + 1)(s+ 1)

.

Theorem 3.20. The first reduced (a, b)-KA index of biswapped net-
work Bsw(Kr,s) with basis network Kr,s is given by

RKA1
a,b(Bsw(Kr,s)) = 2rs(r + s+ 1)(ra + sa)b + 2b

(
r2sab + s2rab

)
.
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Proof. By definition and by using Table 4, we deduce

RKA1
a,b(Bsw(Kr,s)) =

∑
uv∈E(G)

[
(dG(u)− 1)a + (dG(v)− 1)a

]b
= 2rs(r + s+ 1)(ra + sa)b + r2

(
sa + sa

)b
+s2

(
ra + ra

)b
= 2rs(r + s+ 1)(ra + sa)b + r2

(
2× sa

)b
+s2

(
2× ra

)b
= 2rs(r + s+ 1)(ra + sa)b + 2b

(
r2sab + s2rab

)
.

From Theorem 3.20, we establish the following results.

Corollary 3.21. The reduced Sombor index of Bsw(Kr,s) is

RSO(Bsw(Kr,s)) = 2rs(r + s+ 1)
√
r2 + s2 + rs

√
2
(
r + s

)
.

Corollary 3.22. The reduced modified Sombor index of Bsw(Kr,s)
is

mRSO(Bsw(Kr,s)) =
2rs(r + s+ 1)√

r2 + s2
+

√
2(r3 + s3)

2rs
.

Theorem 3.23. The second reduced (a, b)-KA index of biswapped
network Bsw(Kr,s) with basis network Kr,s is given by

RKA2
a,b(Bsw(Kr,s)) = 2rs(r + s+ 1)(rasa)b + r2s2ab + s2r2ab.

Proof. By definition and by using Table 4, we deduce

RKA2
a,b(Bsw(Kr,s)) =

∑
uv∈E(G)

[
(dG(u)− 1)a · (dG(v)− 1)a

]b
= 2rs(r + s+ 1)(ra · sa)b + r2

(
sa · sa

)b
+ s2

(
ra · ra

)b
= 2rs(r + s+ 1)(rasa)b + r2s2ab + s2r2ab.

Theorem 3.24. The mean Sombor index of biswapped networkBsw(Kr,s)
with basis network Kr,s is given by

mSOα(Bsw(Kr,s)) = r2(s+1)+s2(r+1)+2rs(r+s+1)

(
(r + 1)α + (s+ 1)α

2

) 1
α

.
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Proof. By definition and by using Table 4, we deduce

mSOα(Bsw(Kr,s)) =
∑

uv∈E(G)

(
dG(u)α + dG(v)α

2

) 1
α

= 2rs(r + s+ 1)

(
(r + 1)α + (s+ 1)α

2

) 1
α

+r2
(

(s+ 1)α + (s+ 1)α

2

) 1
α

+s2
(

(r + 1)α + (r + 1)α

2

) 1
α

= 2rs(r + s+ 1)

(
(r + 1)α + (s+ 1)α

2

) 1
α

+r2(s+ 1) + s2(r + 1).

Note: By putting r=1 in Theorems 3.17, 3.20, 3.23, 3.24 and Corollaries
3.18, 3.19, 3.21, 3.22, we get the first (a, b)-KA index, the first reduced
(a, b)-KA index, the second reduced (a, b)-KA index, the mean Sombor
index, the sombor index, the modified sombor index, the reduced Som-
bor index and the reduced modified Sombor index of biswapped network
Bsw(K1,s) with basis network K1,s (star graph) respectively.

3.4. Results for biswapped networks Bsw(Gr)

Definition 4. [4] A graph G is regular of degree r if deg(v) = r for
each vertex v of G. Such graphs are called r − regular.

Let Gr be r − regular graph on the n vertices and Bsw(Gr) [3] be the
biswapped network with the basis network Gr. The numbers of vertices
and edges in Bsw(Gr) are 2n2 and n2(r + 1) respectively. Figures 5, 6
and 7 show a biswapped network of cycle graph C4, complete graph K4

and n-cube graph Q3 as the basis graph.

Theorem 3.25. If Bsw(Gr) is a biswapped network with basis net-
work r − regular graph Gr with order n, then

mSOα(Bsw(Gr)) = n2(r + 1)2.

Proof. The numbers of vertices and edges in Bsw(Gr) are 2n2 and
n2(r + 1) respectively. By expression in (1.3) we get the desired result.
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Theorem 3.26. If Bsw(Gr) is a biswapped network with basis net-
work r − regular graph Gr with order n, then

KA1
a,b(Gr) = n22b(r + 1)ab+1,

RKA1
a,b(Gr) = n2(r + 1)2brab.

Proof. The numbers of vertices and edges in Bsw(Gr) are 2n2 and
n2(r + 1) respectively. By expressions in 1.1 and 1.2 we get the desired
result.

From Theorem 3.26, we obtain the following results.

Corollary 3.27. If Bsw(Gr) is a biswapped network with basis
network r − regular graph Gr with order n, then

SO(Gr) = n2
√

2(r + 1)2,

mSO(Gr) =
n2√

2
,

RSO(Gr) =
√

2n2(r + 1)r,

mRSO(Gr) =
n2(r + 1)

r
√

2
,

RKA2
a,b(Gr) = n2(r + 1)r2ab.

Definition 5. [9] A walk of a graph G is an alternating sequence
of points and lines v0, x1, v1, . . . , vn−1, xn, vn, beginning and ending with
points, in which each line is incident with the two points immediately
preceding and following it. This walk joins v0 and vn, and may also
be denoted v0 v1 v2 . . . vn; it is sometimes called a v0 − vn walk. It is
closed if v0 = vn and is open otherwise. It is a trail if all the lines are
distinct, and a path if all the points(and thus necessarily all the lines)
are distinct. If the walk is closed, then it is a cycle provided its n points
are distinct and n ≥ 3.

Corollary 3.28. If Bsw(Cn) is a biswapped network with basis
network 2− regular graph Cn with order n, then

KA1
a,b(Cn) = n22b3ab+1,

RKA1
a,b(Cn) = 3n22b(a+1),

SO(Bsw(Cn)) = 9n2
√

2,

mSO(Bsw(Cn)) =
n2√

2
,

RSO(Bsw(Cn)) = 6n2
√

2,
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mRSO(Bsw(Cn)) =
3n2

2
√

2
,

RKA2
a,b(Bsw(Cn)) = 3n222ab.

Proof. From Theorem 3.26 and Corollary 3.27, we obtain the desired
result.
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Figure 5. Biswapped network Bsw(C4)

Definition 6. [4] A graph is complete if every two of its vertices are
adjacent. A complete (n,m) graph is therefore a regular graph of degree

n− 1 having m = n(n−1)
2 ; we denote this graph by Kn.

Corollary 3.29. If Bsw(Kn) is a biswapped network with basis
network (n− 1)− regular graph Kn with order n, then

KA1
a,b(Kn) = n32bnab,

RKA1
a,b(Kn) = n32b(n− 1)ab,

SO(Bsw(Kn)) = n4
√

2,

mSO(Bsw(Kn)) =
n2√

2
,

RSO(Bsw(Kn)) = n3(n− 1)
√

2,

mRSO(Bsw(Kn)) =
n3√

2(n− 1)
,

RKA2
a,b(Bsw(Kn)) = n3(n− 1)2ab.
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Figure 6. Biswapped network Bsw(K4)

Proof. From Theorem 3.26 and Corollary 3.27, we obtain the desired
result.

Definition 7. [9] The n-cube Qn is defined recursively by Q1 = K2

and Qn = K2 × Qn−1. Thus Qn has 2n points which may be labeled
a1a2 . . . an, where each ai is either 0 or 1. Two points of Qn are adjacent
if their binary representations differ at exactly one place.

Corollary 3.30. If Bsw(Qn) is a biswapped network with basis
network n− regular graph Qn with order n, then

KA1
a,b(Qn) = 22n+b(n+ 1)ab+1,

RKA1
a,b(Qn) = 22n+b(n+ 1)nab,

SO(Bsw(Qn)) = 2
4n+1

2
(
n+ 1

)2
,

mSO(Bsw(Qn)) = 2
4n−1

2

RSO(Bsw(Qn)) = 2
4n+1

2 n
(
n+ 1

)
,

mRSO(Bsw(Qn)) =
2

4n−1
2 (n+ 1)

n
,

RKA2
a,b(Bsw(Qn)) = 22n(n+ 1)n2ab.

Proof. From Theorem 3.26 and Corollary 3.27, we obtain the desired
result.
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Figure 7. Biswapped network Bsw(Q3)

Figure 8. Graphical Comparison of SO(Bsw(Pn),
mSO(Bsw(Pn), RSO(Bsw(Pn) and mRSO(Bsw(Pn)
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Figure 9. Graphical Comparison of SO(Bsw(Wn),
mSO(Bsw(Wn), RSO(Bsw(Wn) and mRSO(Bsw(Wn).

(a) SO(Bsw(Kr,s) and mSO(Bsw(Kr,s)

(b) RSO(Bsw(Kr,s) and mRSO(Bsw(Kr,s)

Figure 10. Graphical Comparison of SO(Bsw(Kr,s)),
mSO(Bsw(Kr,s), RSO(Bsw(Kr,s) and mRSO(Bsw(Kr,s).
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4. Graphical representation and discussion

In this section we discuss graphically representation related to the
sombor index, modified sombor index, reduced sombor index, reduced,
modified sombor index. All these indices are degree based topological
indices for the OTIS biswapped network of the basis graph as path,
wheel and complete bipartite graphs.
We determined the explicit formulas for the first (a, b)-KA index, the
Sombor index, the modified Sombor index, the first reduced (a, b)-KA
index, the reduced Sombor index, the reduced modified Sombor index,
the second reduced (a, b)-KA index and the mean Sombor index mSOα
for the OTIS biswapped networks.

• The graphical representation of OTIS biswapped network of path
graph Bsw(Pn) is shown in Figure 8. It can be observed that the
values of all indices increase with increasing value of n.
• Similarly, the graphical representation of OTIS biswapped network

of wheel graph Bsw(Wn) is shown in Figure 9. It can be observed
that the values of all indices increase with increasing value of n.
• Similarly, the graphical representation of OTIS biswapped net-

work of complete bipartite graph Bsw(Kr,s) is shown in Figure
10. It can be observed that the values of all indices increase with
increasing values of r, s.
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