DOI QR코드

DOI QR Code

Evaluation of Non-infarct-Related Arteries Using C-11 Acetate PET in STEMI With Multivessel Disease

  • Sang-Geon Cho (Department of Nuclear Medicine, Chonnam National University Hospital) ;
  • Minchul Kim (Department of Cardiology, Chonnam National University Hospital) ;
  • Seung Hun Lee (Department of Cardiology, Chonnam National University Hospital) ;
  • Ki Seong Park (Department of Nuclear Medicine, Chonnam National University Hospital) ;
  • Jahae Kim (Department of Nuclear Medicine, Chonnam National University Hospital) ;
  • Jang Bae Moon (Department of Nuclear Medicine, Chonnam National University Hospital) ;
  • Ho-Chun Song (Department of Nuclear Medicine, Chonnam National University Hospital)
  • Received : 2021.11.30
  • Accepted : 2022.02.17
  • Published : 2022.07.27

Abstract

BACKGROUND: We analyzed whether C-11 acetate positron emission tomography (PET) can be used for the evaluation of non-infarct-related artery (NIRA) in patients with ST-elevation myocardial infarction (STEMI) and multivessel disease. METHODS: We prospectively enrolled 31 patients with STEMI and at least one NIRA stenosis (diameter stenosis [DS] ≥ 50%). C-11 acetate PET was performed after successful revascularization for the infarct-related artery (IRA). Myocardial blood flow (MBF) and oxidative metabolism (kmono) were measured and compared between NIRA vs. IRA, stenotic (DS ≥ 50%) vs. non-stenotic (DS < 50%) NIRAs, and NIRAs with significant stenosis (DS ≥ 70% or fractional flow reserve [FFR] ≤ 0.80) vs. those without (neither DS ≥ 70% nor FFR ≤ 0.80). The correlations between PET and angiographic parameters were also analyzed. RESULTS: MBF and kmono were significantly higher in NIRAs than those in IRAs. Stenotic NIRAs showed significantly reduced stress MBF, myocardial flow reserve (MFR), relative flow reserve (RFR) (0.72 ± 0.12 vs. 0.82 ± 0.14; p = 0.001), and stress kmono, as compared to those in non-stenotic NIRAs. NIRAs with significant stenosis had significantly lower stress MBF, MFR, and RFR (0.70 ± 0.10 vs. 0.80 ± 0.14; p = 0.001). RFR showed the best, but modest linear correlation with DS of NIRA stenosis (r = -0.429, p = 0.001). RFR > 0.81 could effectively exclude the presence of significant NIRA stenosis. CONCLUSIONS: C-11 acetate PET could be a feasible alternative noninvasive modality in patients with STEMI and multivessel disease, by excluding the presence of significant NIRA stenosis.

Keywords

Acknowledgement

This research was supported from the Korean Cardiac Research Foundation (Grant No. 201803-02).

References

  1. Kim Y, Ahn Y, Cho MC, Kim CJ, Kim YJ, Jeong MH. Current status of acute myocardial infarction in Korea. Korean J Intern Med 2019;34:1-10.
  2. Sorajja P, Gersh BJ, Cox DA, et al. Impact of multivessel disease on reperfusion success and clinical outcomes in patients undergoing primary percutaneous coronary intervention for acute myocardial infarction. Eur Heart J 2007;28:1709-16.
  3. Writing Committee MembersLawton JS, Tamis-Holland JE, et al. 2021 ACC/AHA/SCAI guideline for coronary artery revascularization: a report of the American College of Cardiology/American Heart Association joint committee on clinical practice guidelines. J Am Coll Cardiol 2022;79:e21-129.
  4. Tavakol M, Ashraf S, Brener SJ. Risks and complications of coronary angiography: a comprehensive review. Glob J Health Sci 2012;4:65-93.
  5. Hanratty CG, Koyama Y, Rasmussen HH, Nelson GI, Hansen PS, Ward MR. Exaggeration of nonculprit stenosis severity during acute myocardial infarction: implications for immediate multivessel revascularization. J Am Coll Cardiol 2002;40:911-6.
  6. Thim T, van der Hoeven NW, Musto C, et al. Evaluation and management of nonculprit lesions in STEMI. JACC Cardiovasc Interv 2020;13:1145-54.
  7. Knaapen P, Germans T, Knuuti J, et al. Myocardial energetics and efficiency: current status of the noninvasive approach. Circulation 2007;115:918-27.
  8. Sorensen J, Harms HJ, Aalen JM, Baron T, Smiseth OA, Flachskampf FA. Myocardial efficiency: a fundamental physiological concept on the verge of clinical impact. JACC Cardiovasc Imaging 2020;13:1564-76.
  9. Naya M, Tamaki N. Imaging of myocardial oxidative metabolism in heart failure. Curr Cardiovasc Imaging Rep 2014;7:9244.
  10. Duvernoy CS, Raffel DM, Swanson SD, et al. Left ventricular metabolism, function, and sympathetic innervation in men and women with type 1 diabetes. J Nucl Cardiol 2016;23:960-9.
  11. Guclu A, Knaapen P, Harms HJ, et al. Disease stage-dependent changes in cardiac contractile performance and oxygen utilization underlie reduced myocardial efficiency in human inherited hypertrophic cardiomyopathy. Circ Cardiovasc Imaging 2017;10:e005604.
  12. Liu S, Lin X, Shi X, et al. Myocardial tissue and metabolism characterization in men with alcohol consumption by cardiovascular magnetic resonance and 11C-acetate PET/CT. J Cardiovasc Magn Reson 2020;22:23.
  13. Kim MC, Bae S, Ahn Y, et al. Benefit of a staged in-hospital revascularization strategy in hemodynamically stable patients with ST-segment elevation myocardial infarction and multivessel disease: analyses by risk stratification. Catheter Cardiovasc Interv 2021;97:1151-9.
  14. Kim MC. Timing of FFR-guided PCI for non-IRA in STEMI and MVD (OPTION-STEMI) [Internet]. Bethesda, MD: U.S. National Library of Medicine; 2020 [cited 2021 Sep 2]. Available at: https://clinicaltrials.gov/ct2/show/NCT04626882.
  15. Wu YW, Naya M, Tsukamoto T, et al. Heterogeneous reduction of myocardial oxidative metabolism in patients with ischemic and dilated cardiomyopathy using C-11 acetate PET. Circ J 2008;72:786-92.
  16. van den Hoff J, Burchert W, Borner AR, et al. [1-11C]Acetate as a quantitative perfusion tracer in myocardial PET. J Nucl Med 2001;42:1174-82.
  17. Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539-42.
  18. Cho SG, Park KS, Kim J, et al. Coronary flow reserve and relative flow reserve measured by N-13 ammonia PET for characterization of coronary artery disease. Ann Nucl Med 2017;31:144-52.
  19. Plathow C, Weber WA. Tumor cell metabolism imaging. J Nucl Med 2008;49 Suppl 2:43S-63S.
  20. Kalff V, Hicks RJ, Hutchins G, Topol E, Schwaiger M. Use of carbon-11 acetate and dynamic positron emission tomography to assess regional myocardial oxygen consumption in patients with acute myocardial infarction receiving thrombolysis or coronary angioplasty. Am J Cardiol 1993;71:529-35.
  21. Schulz R, Kappeler C, Coenen H, Bockisch A, Heusch G. Positron emission tomography analysis of [1-11C] acetate kinetics in short-term hibernating myocardium. Circulation 1998;97:1009-16.
  22. Kaufmann PA, Camici PG. Myocardial blood flow measurement by PET: technical aspects and clinical applications. J Nucl Med 2005;46:75-88.
  23. Murthy VL, Bateman TM, Beanlands RS, et al. Clinical quantification of myocardial blood flow using PET: joint position paper of the SNMMI cardiovascular council and the ASNC. J Nucl Med 2018;59:273-93.
  24. Biesbroek PS, Amier RP, Teunissen PF, et al. Changes in remote myocardial tissue after acute myocardial infarction and its relation to cardiac remodeling: a CMR T1 mapping study. PLoS One 2017;12:e0180115.
  25. Nesterov SV, Deshayes E, Sciagra R, et al. Quantification of myocardial blood flow in absolute terms using 82Rb PET imaging: the RUBY-10 Study. JACC Cardiovasc Imaging 2014;7:1119-27.
  26. Heyndrickx GR, Wijns W, Vogelaers D, et al. Recovery of regional contractile function and oxidative metabolism in stunned myocardium induced by 1-hour circumflex coronary artery stenosis in chronically instrumented dogs. Circ Res 1993;72:901-13.
  27. Gaur S, Taylor CA, Jensen JM, et al. FFR derived from coronary CT angiography in nonculprit lesions of patients with recent STEMI. JACC Cardiovasc Imaging 2017;10:424-33.
  28. Everaars H, van der Hoeven NW, Janssens GN, et al. Cardiac magnetic resonance for evaluating nonculprit lesions after myocardial infarction: comparison with fractional flow reserve. JACC Cardiovasc Imaging 2020;13:715-28.
  29. Gould KL, Johnson NP. Coronary blood flow after acute MI: alternative truths. JACC Cardiovasc Interv 2016;9:614-7.
  30. Ng VG, Lansky AJ, Meller S, et al. The prognostic importance of left ventricular function in patients with ST-segment elevation myocardial infarction: the HORIZONS-AMI trial. Eur Heart J Acute Cardiovasc Care 2014;3:67-77.