DOI QR코드

DOI QR Code

Multiparametric Cardiac Magnetic Resonance Imaging Detects Altered Myocardial Tissue and Function in Heart Transplantation Recipients Monitored for Cardiac Allograft Vasculopathy

  • Muhannad A. Abbasi (Department of Radiology, Feinberg School of Medicine, Northwestern University) ;
  • Allison M. Blake (Department of Radiology, Feinberg School of Medicine, Northwestern University) ;
  • Roberto Sarnari (Department of Radiology, Feinberg School of Medicine, Northwestern University) ;
  • Daniel Lee (Department of Radiology, Feinberg School of Medicine, Northwestern University) ;
  • Allen S. Anderson (Division of Cardiology, Department of Medicine, Northwestern University) ;
  • Kambiz Ghafourian (Division of Cardiology, Department of Medicine, Northwestern University) ;
  • Sadiya S. Khan (Division of Cardiology, Department of Medicine, Northwestern University) ;
  • Esther E. Vorovich (Division of Cardiology, Department of Medicine, Northwestern University) ;
  • Jonathan D. Rich (Division of Cardiology, Department of Medicine, Northwestern University) ;
  • Jane E. Wilcox (Division of Cardiology, Department of Medicine, Northwestern University) ;
  • Clyde W. Yancy (Division of Cardiology, Department of Medicine, Northwestern University) ;
  • James C. Carr (Department of Radiology, Feinberg School of Medicine, Northwestern University) ;
  • Michael Markl (Department of Radiology, Feinberg School of Medicine, Northwestern University)
  • Received : 2022.01.05
  • Accepted : 2022.05.02
  • Published : 2022.10.27

Abstract

BACKGROUND: Cardiac allograft vasculopathy (CAV) is a complication beyond the first-year post-heart transplantation (HTx). We aimed to test the utility of cardiac magnetic resonance (CMR) to detect functional/structural changes in HTx recipients with CAV. METHODS: Seventy-seven prospectively recruited HTx recipients beyond the first-year post-HTx and 18 healthy controls underwent CMR, including cine imaging of ventricular function and T1- and T2-mapping to assess myocardial tissue changes. Data analysis included quantification of global cardiac function and regional T2, T1 and extracellular volume based on the 16-segment model. International Society for Heart and Lung Transplantation criteria was used to adjudicate CAV grade (0-3) based on coronary angiography. RESULTS: The majority of HTx recipients (73%) presented with CAV (1: n = 42, 2/3: n = 14, 0: n = 21). Global and segmental T2 (49.5 ± 3.4 ms vs 50.6 ± 3.4 ms, p < 0.001;16/16 segments) were significantly elevated in CAV-0 compared to controls. When comparing CAV-2/3 to CAV-1, global and segmental T2 were significantly increased (53.6 ± 3.2 ms vs. 50.6 ± 2.9 ms, p < 0.001; 16/16 segments) and left ventricular ejection fraction was significantly decreased (54 ± 9% vs. 59 ± 9%, p < 0.05). No global, structural, or functional differences were seen between CAV-0 and CAV-1. CONCLUSIONS: Transplanted hearts display functional and structural alteration compared to native hearts, even in those without evidence of macrovasculopathy (CAV-0). In addition, CMR tissue parameters were sensitive to changes in CAV-1 vs. 2/3 (mild vs. moderate/severe). Further studies are warranted to evaluate the diagnostic value of CMR for the detection and classification of CAV.

Keywords

Acknowledgement

The work was supported by National Institutes of Health (National Heart, Lung, and Blood Institute [NHLBI] grant R01 HL117888).

References

  1. Lee MS, Tadwalkar RV, Fearon WF, et al. Cardiac allograft vasculopathy: a review. Catheter Cardiovasc Interv 2018;92:E527-36.
  2. Lund LH, Khush KK, Cherikh WS, et al. The registry of the International Society for Heart and Lung Transplantation: Thirty-fourth Adult Heart Transplantation Report-2017; Focus theme: allograft ischemic time. J Heart Lung Transplant 2017;36:1037-46.
  3. Yusen RD, Edwards LB, Dipchand AI, et al. The registry of the International Society for Heart and Lung Transplantation: Thirty-third Adult Lung and Heart-Lung Transplant Report-2016; Focus theme: primary diagnostic indications for transplant. J Heart Lung Transplant 2016;35:1170-84.
  4. Lee F, Nair V, Chih S. Cardiac allograft vasculopathy: insights on pathogenesis and therapy. Clin Transplant 2020;34:e13794.
  5. Lu WH, Palatnik K, Fishbein GA, et al. Diverse morphologic manifestations of cardiac allograft vasculopathy: a pathologic study of 64 allograft hearts. J Heart Lung Transplant 2011;30:1044-50.
  6. Abu-Qaoud MS, Stoletniy LN, Chen D, Kerstetter J, Kuhn M, Pai RG. Lack of relationship between microvascular and macrovascular disease in heart transplant recipients. Transplantation 2012;94:965-70.
  7. Kubrich M, Petrakopoulou P, Kofler S, et al. Impact of coronary endothelial dysfunction on adverse long-term outcome after heart transplantation. Transplantation 2008;85:1580-7.
  8. Awad M, Czer LS, Hou M, et al. Early denervation and later reinnervation of the heart following cardiac transplantation: a review. J Am Heart Assoc 2016;5:e004070.
  9. Gao SZ, Alderman EL, Schroeder JS, Hunt SA, Wiederhold V, Stinson EB. Progressive coronary luminal narrowing after cardiac transplantation. Circulation 1990;82:IV269-75.
  10. Sharples LD, Jackson CH, Parameshwar J, Wallwork J, Large SR. Diagnostic accuracy of coronary angiography and risk factors for post-heart-transplant cardiac allograft vasculopathy. Transplantation 2003;76:679-82.
  11. St Goar FG, Pinto FJ, Alderman EL, et al. Detection of coronary atherosclerosis in young adult hearts using intravascular ultrasound. Circulation 1992;86:756-63.
  12. Pollack A, Nazif T, Mancini D, Weisz G. Detection and imaging of cardiac allograft vasculopathy. JACC Cardiovasc Imaging 2013;6:613-23.
  13. Ricci MA, Trevisani GT, Pilcher DB. Vascular complications of cardiac catheterization. Am J Surg 1994;167:375-8.
  14. Tadic M. Multimodality evaluation of the right ventricle: an updated review. Clin Cardiol 2015;38:770-6.
  15. Ferreira VM, Piechnik SK, Robson MD, Neubauer S, Karamitsos TD. Myocardial tissue characterization by magnetic resonance imaging: novel applications of T1 and T2 mapping. J Thorac Imaging 2014;29:147-54.
  16. Puntmann VO, Valbuena S, Hinojar R, et al. Society for Cardiovascular Magnetic Resonance (SCMR) expert consensus for CMR imaging endpoints in clinical research: part I - analytical validation and clinical qualification. J Cardiovasc Magn Reson 2018;20:67.
  17. Moon JC, Messroghli DR, Kellman P, et al. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson 2013;15:92.
  18. Giri S, Chung YC, Merchant A, et al. T2 quantification for improved detection of myocardial edema. J Cardiovasc Magn Reson 2009;11:56.
  19. Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP. Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 2004;52:141-6.
  20. Haaf P, Garg P, Messroghli DR, Broadbent DA, Greenwood JP, Plein S. Cardiac T1 mapping and extracellular volume (ECV) in clinical practice: a comprehensive review. J Cardiovasc Magn Reson 2017;18:89.
  21. Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539-42.
  22. Dolan RS, Rahsepar AA, Blaisdell J, et al. Cardiac structure-function MRI in patients after heart transplantation. J Magn Reson Imaging 2019;49:678-87.
  23. Dolan RS, Rahsepar AA, Blaisdell J, et al. Multiparametric cardiac magnetic resonance imaging can detect acute cardiac allograft rejection after heart transplantation. JACC Cardiovasc Imaging 2019;12:1632-41.
  24. Mehra MR, Crespo-Leiro MG, Dipchand A, et al. International Society for Heart and Lung Transplantation working formulation of a standardized nomenclature for cardiac allograft vasculopathy-2010. J Heart Lung Transplant 2010;29:717-27.
  25. Markl M, Rustogi R, Galizia M, et al. Myocardial T2-mapping and velocity mapping: changes in regional left ventricular structure and function after heart transplantation. Magn Reson Med 2013;70:517-26.
  26. Yuan Y, Cai J, Cui Y, et al. CMR-derived extracellular volume fraction (ECV) in asymptomatic heart transplant recipients: correlations with clinical features and myocardial edema. Int J Cardiovasc Imaging 2018;34:1959-67.
  27. Miller CA, Sarma J, Naish JH, et al. Multiparametric cardiovascular magnetic resonance assessment of cardiac allograft vasculopathy. J Am Coll Cardiol 2014;63:799-808.
  28. Chih S, Ross HJ, Alba AC, Fan CS, Manlhiot C, Crean AM. Perfusion cardiac magnetic resonance imaging as a rule-out test for cardiac allograft vasculopathy. Am J Transplant 2016;16:3007-15.
  29. Erbel C, Mukhammadaminova N, Gleissner CA, et al. Myocardial perfusion reserve and strain-encoded CMR for evaluation of cardiac allograft microvasculopathy. JACC Cardiovasc Imaging 2016;9:255-66.
  30. Korosoglou G, Osman NF, Dengler TJ, et al. Strain-encoded cardiac magnetic resonance for the evaluation of chronic allograft vasculopathy in transplant recipients. Am J Transplant 2009;9:2587-96.
  31. Korosoglou G, Riedle N, Erbacher M, et al. Quantitative myocardial blush grade for the detection of cardiac allograft vasculopathy. Am Heart J 2010;159:643-651.e2.
  32. Braggion-Santos MF, Lossnitzer D, Buss S, et al. Late gadolinium enhancement assessed by cardiac magnetic resonance imaging in heart transplant recipients with different stages of cardiac allograft vasculopathy. Eur Heart J Cardiovasc Imaging 2014;15:1125-32.
  33. van Heeswijk RB, Bastiaansen JA, Iglesias JF, et al. Quantification of myocardial interstitial fibrosis and extracellular volume for the detection of cardiac allograft vasculopathy. Int J Cardiovasc Imaging 2020;36:533-42.
  34. Ajluni SC Jr, Mously H, Chami T, et al. Non-invasive imaging in the evaluation of cardiac allograft vasculopathy in heart transplantation: a systematic review. Curr Probl Cardiol 2022;101103.
  35. Sciaccaluga C, Ghionzoli N, Mandoli GE, et al. The role of non-invasive imaging modalities in cardiac allograft vasculopathy: an updated focus on current evidences. Heart Fail Rev 2021 Aug 12 [E-pub ahead of print], https://doi.org/10.1007/s10741-021-10155-0.
  36. Costanzo MR, Dipchand A, Starling R, et al. The International Society of Heart and Lung Transplantation guidelines for the care of heart transplant recipients. J Heart Lung Transplant 2010;29:914-56.
  37. Elkaryoni A, Abu-Sheasha G, Altibi AM, Hassan A, Ellakany K, Nanda NC. Diagnostic accuracy of dobutamine stress echocardiography in the detection of cardiac allograft vasculopathy in heart transplant recipients: a systematic review and meta-analysis study. Echocardiography 2019;36:528-36.
  38. Clerkin KJ, Ali ZA, Mancini DM. New developments for the detection and treatment of cardiac vasculopathy. Curr Opin Cardiol 2017;32:316-25.
  39. Clerkin KJ, Farr MA, Restaino SW, Ali ZA, Mancini DM. Dobutamine stress echocardiography is inadequate to detect early cardiac allograft vasculopathy. J Heart Lung Transplant 2016;35:1040-1.
  40. Akosah KO, Mohanty PK, Funai JT, et al. Noninvasive detection of transplant coronary artery disease by dobutamine stress echocardiography. J Heart Lung Transplant 1994;13:1024-38.
  41. Masarone D, Kittleson M, Gravino R, Valente F, Petraio A, Pacileo G. The role of echocardiography in the management of heart transplant recipients. Diagnostics (Basel) 2021;11:2338.
  42. Clemmensen TS, Eiskjaer H, Logstrup BB, Ilkjaer LB, Poulsen SH. Left ventricular global longitudinal strain predicts major adverse cardiac events and all-cause mortality in heart transplant patients. J Heart Lung Transplant 2017;36:567-76.
  43. Pober JS, Chih S, Kobashigawa J, Madsen JC, Tellides G. Cardiac allograft vasculopathy: current review and future research directions. Cardiovasc Res 2021;117:2624-38.
  44. Schepis T, Achenbach S, Weyand M, et al. Comparison of dual source computed tomography versus intravascular ultrasound for evaluation of coronary arteries at least one year after cardiac transplantation. Am J Cardiol 2009;104:1351-6.
  45. Shah NR, Blankstein R, Villines T, Imran H, Morrison AR, Cheezum MK. Coronary CTA for surveillance of cardiac allograft vasculopathy. Curr Cardiovasc Imaging Rep 2019;12:1-7.
  46. Oebel S, Hamada S, Higashigaito K, et al. Comprehensive morphologic and functional imaging of heart transplant patients: first experience with dynamic perfusion CT. Eur Radiol 2018;28:4111-21.
  47. Gunther A, Andersen R, Gude E, et al. The predictive value of coronary artery calcium detected by computed tomography in a prospective study on cardiac allograft vasculopathy in heart transplant patients. Transpl Int 2018;31:82-91.
  48. Zerhouni EA, Parish DM, Rogers WJ, Yang A, Shapiro EP. Human heart: tagging with MR imaging--a method for noninvasive assessment of myocardial motion. Radiology 1988;169:59-63.
  49. Aletras AH, Ding S, Balaban RS, Wen H. DENSE: displacement encoding with stimulated echoes in cardiac functional MRI. J Magn Reson 1999;137:247-52.