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ABSTRACT

Telomeres are located at the end of chromosomes. They are known to protect chromosomes 
and prevent cellular senescence. Telomere length shortening has been considered an 
important marker of aging. Many studies have reported this concept in connection 
with neurodegenerative disorders. Considering the role of telomeres, it seems that 
longer telomeres are beneficial while shorter telomeres are detrimental in preventing 
neurodegenerative disorders. However, several studies have shown that people with longer 
telomeres might also be vulnerable to neurodegenerative disorders. Before these conflicting 
results can be explained through large-scale longitudinal clinical studies on the role of 
telomere length in neurodegenerative disorders, it would be beneficial to simultaneously 
review these opposing results. Understanding these conflicting results might help us plan 
future studies to reveal the role of telomere length in neurodegenerative disorders. In 
this review, these contradictory findings are thoroughly discussed, with the aim to better 
understand the role of telomere length in neurodegenerative disorders.
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INTRTODUCTION

The prevalence of age-related neurodegenerative disorders including Alzheimer’s disease 
(AD), Parkinson’s disease (PD), and frontotemporal dementia (FTD) continue to increase 
worldwide. Although many studies have attempted to reveal the exact etiologies and 
mechanisms of each disease, they remain unclear. Understanding the role of aging in 
neurodegenerative disorders could be helpful because aging is a robust nonmodifiable risk 
factor.1 Aging of all organisms is eventually associated with progressive physical deterioration 
and increased vulnerability to death.2 Aging can result in genomic instability, telomere 
shortening, epigenetic changes, mitochondrial dysfunction, cellular senescence, altered 
intercellular communications, and so on.2 Among these alterations, telomere attribution is 
considered one of the most remarkable markers for aging and cellular senescence.3
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Telomeres are repetitive nucleotide sequences of TTAGGG at the end of chromosomes. The 
length of double-stranded telomeric DNA ranges from 5 to 15 bp in humans. Telomeres 
form special cap structures with t-loop.4-6 It is well known that telomeres contribute 
to the maintenance of chromosomal stability by preventing fusion and degradation of 
chromosomes and regulating the ability of cells to replicate via mitosis.4-6 However, telomere 
length decreases during aging and under various stressful conditions. For example, our 
previous study has shown that approximately 48 bp per year is naturally shortened in healthy 
Korean males and approximately 56 bp per year in healthy Korean females.7 Shortening 
of telomere length can be faster under stressful and pathological conditions. Oxidative 
stress and other harmful stressors can shorten telomere length. Furthermore, telomere 
length shortening can also happen in various neurodegenerative disorders.8 These findings 
suggest that people with shorter telomere lengths are more vulnerable to neurodegenerative 
disorders, whereas people with longer telomere lengths might be more resistant to such 
disorders. Results of many studies support this hypothesis. However, several studies have 
reported contradictory results, showing that patients with neurodegenerative disorders have 
longer telomeres.9,10 These conflicting results should be discussed and explained to better 
understand the role of telomere length in neurodegenerative disorders.

Thus, the purpose of this review was to summarize papers that have examined the 
relationship between telomere length and neurodegenerative disorders and to suggest future 
studies for answering any remaining questions.

AGING AND NEURODEGENERATIVE DISORDERS

Aging is an inevitable event in the lifecycle and an undeniable risk factor for 
neurodegenerative disorders.1 Aging leads to many changes such as genomic instability, 
telomere attrition, epigenetic alterations, loss of proteostasis, mitochondrial dysfunction, 
cellular senescence, deregulated nutrient sensing, stem cell exhaustion, and altered 
intercellular communication (Fig. 1).1 These hallmarks of aging will be briefly discussed here.
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Fig. 1. Hallmarks of aging. Hallmarks of aging include genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, mitochondrial 
dysfunction, cellular senescence, deregulated nutrient sensing, stem cell exhaustion, and altered intercellular communication.



Genomic instability, including nucleic acid sequences, chromosomal rearrangements, 
and aneuploidy, is known to play a vital role in the biology of aging.11 Genomic instability 
means mutations within the genome, including nucleic acid sequences, chromosomal 
rearrangements, and aneuploidy. External stress-caused or endogenous DNA damage can 
be an important and major source of genomic instability.12 DNA damage can be repaired 
in healthy situations through the following 5 DNA repair pathways: base excision repair, 
nucleotide excision repair, mismatch repair, DNA double-strand break repair, and direct 
reversal.13,14 In pathological conditions, these repair pathways do not work properly. 
Damaged DNAs cause genomic instability and lead to pathological signaling cascades 
that promote cellular senescence and inflammation known to be the main pathologies of 
neurodegenerative disorders.1

Telomere shortening has been emphasized in aging biology. The role of telomere shortening 
in aging and senescence will be thoroughly and separately discussed later. Epigenetic 
alterations will be covered here. Epigenetic alterations refer to changes in the chemical 
structure of DNA without changing DNA coding sequence. These alterations include 
methylation, PARylation, and acetylation of DNA. Histones can collectively influence the 
chromatin tertiary structure. Epigenetic alterations are known to affect chromatin activity 
and function, including transcription and replication, thus initiating the pathology of 
neurodegenerative disorders.15

Loss of proteostasis means an imbalance between protein synthesis and degradation due 
to improper regulation of the proteasome, autophagy, ubiquitination machinery, and 
lysosome.16 It is well established that loss of proteostasis can increase protein misfolding, 
aggregation, and deposition, which are strongly associated with neurodegenerative disorders.

Mitochondria are the main source of intracellular energy. Therefore, they play critical 
roles in neuronal activity. However, mitochondria damaged by aging can produce a glut of 
reactive oxygen species, one of the most important triggers of the pathogenic mechanisms 
of neurodegenerative disorders.17 Furthermore, damaged mitochondria can impair lipid 
biosynthesis, calcium signaling, and cell apoptosis, which are known to have vital roles in the 
development of neurodegenerative disorders.18

Cellular senescence is the cessation of cell division triggered by a DNA damage response to 
diverse stresses.19 It contributes to the survival of healthy cells and the removal of damaged cells 
by stress-induced stable cell cycle arrest.20 Several pathways are known to be related to cellular 
senescence, including stress-induced premature senescence, replicative senescence, oncogenic-
induced senescence, and mitochondrial dysfunction-associated senescence.20 Recently, 
autophagy has been emphasized as another key process associated with cellular senescence.21 
However, it remains unclear whether autophagy promotes or inhibits senescence.

Deregulated nutrient sensing refers to impaired ability of cells to adjust their metabolism to 
the amount of available nutrients. Cells must sense nutrient levels to maintain a stable status. 
Nutrient sensing is essential for cell survival. However, it is deregulated with aging, resulting 
in altered metabolism and cell death. Caloric restriction can downregulate the nutrient 
signaling pathway, expand lifespan, and exert neuroprotective effects through various 
nutrient sensing pathways associated with insulin, insulin-like growth factor 1, mechanistic 
target of rapamycin, AMP-activated protein kinase, and sirtuins.16
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Stem cell exhaustion is an important hallmark of aging. If enough stem cells exist in the brain 
and contribute to the regeneration of damaged neurons, humans could live healthier and 
longer. However, in the real world, the number and function of stem cells decline with age. 
The loss of stem cells can be due to DNA damage, telomere attrition, epigenetic alterations, 
loss of proteostasis, mitochondrial dysfunction, and cellular senescence.22

Cells in our body do not survive in isolation from one another. They give and receive external 
signals termed intercellular communication. Aging alters intercellular communication 
through deregulated neurohormonal signaling. Altered intercellular communication is 
known to cause inflammation and neurodegenerative disorders.23 Several mechanisms 
have been suggested to be involved in inflammation. Therapeutic strategies targeting these 
mechanisms have been studied with the aim to treat neurodegenerative disorders.

ROLE OF TELOMERES IN AGING AND SENESCENCE

Telomeres with unique DNA-protein structures can be found at the end of each chromosome 
(Fig. 2). They defend the genome by preventing nucleolytic degradation, unnecessary 
recombination, repair, and interchromosomal fusion. Telomere length is shortened with 
cell division and aging (Fig. 2). When the shortening is over a critical limit, the cell will go 
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Fig. 2. Telomere shortening and aging. Telomere (TTAGGG) length is shortened with cell division. Telomere shortening is an important marker of aging. (A) The 
structure of telomere and its shortening with cell division. (B) The Brief mechanism of telomere shortening and elongation. (C) The relationship between aging, 
telomere shortening, and tissue dysfunction.



through senescence and induce chronic inflammation and tissue dysfunction.24 To protect 
chromosomes from various conditions, telomeres have specific loop structures with telomeric 
DNA and telomere-binding proteins mediated by TRF2.25 These loop structures are considered 
to prime telomeric DNA synthesis by telomerase. Telomerase activity can be observed in 
most proliferating cells. However, somatic cells have low or undetectable levels of telomerase 
activity. Therefore, telomeres in somatic cells cannot be repaired when shortened.

Telomere shortening is thought to be able to reflect the pace of aging. Telomeres are inevitably 
lost with aging in normal diploid cells. For example, human liver cells lose 55 bp of telomeric 
DNA per year and leukocyte telomere length shortens at an average rate of 30–35 bp per year.26,27

Telomere length is inversely correlated with age. Thus, a long telomere length is considered 
to be associated with aging. Several genetic disorders and stressful conditions can accelerate 
telomere shortening. It has been reported that people with shorter telomeres have 
significantly poor survival due to higher mortality rates caused by age-related disorders.28 
In addition, shorter telomere length has been continuously reported to be associated with 
neurodegenerative disorders, which will be discussed later.

TELOMERE LENGTH IN NEURODEDENERATIVE DISORDERS

AD
AD is the most common neurodegenerative disorder. It is a progressive neurological disorder 
that causes brain atrophy due to neuronal cell death. As AD is one of the most representative 
age-related diseases and telomere length is strongly correlated with aging, the relationship 
between the 2 has been studied.1 It is impossible to obtain brain tissues of living patients with 
AD. Most studies have used peripheral blood leukocytes (PBLs) to measure telomere length 
in patients with AD. To accept these findings, it is important to confirm that telomere length 
of neurons in the brain is well correlated with that of PBLs. Regarding this, Lukens et al.29 
have shown that telomere length in PBLs is strongly correlated with that in the cerebellum of 
patients with AD. This finding suggests that the telomere length of PBLs can be used to reveal 
the relationship between telomere length and AD.

Consistent with the hypothesis that shorter telomere length reflecting more rapid aging is 
associated with neurodegenerative disorders, many studies have shown that patients with 
AD have shorter telomeres than healthy people.29-31 Telomere length of patients with AD 
has been reported to be even shorter than that of patients with mild cognitive impairment 
(MCI).31 In Koreans, telomere shortening has been found to be correlated with cognitive 
decline and dementia conversion in MCI due to AD.32 Furthermore, patients with AD have 
greater telomere shortening every year than healthy individuals and patients with MCI.7,32 
Another study has also confirmed that longer AD duration is associated with shorter telomere 
length.33 It has been reported that short telomere length could be useful for predicting the 
incidence of AD among non-APOE ε4 carriers.34

These results regarding the relationship between telomere length and AD suggest that 
individuals with shorter telomeres are vulnerable to AD. One in vitro study using human 
hippocampal progenitors has suggested that telomere shortening has a negative influence 
on human cognitive function, namely, a short telomere length can decrease the proliferative 
capacity and lead to cognitive function impairment in humans.35

87https://doi.org/10.12779/dnd.2022.21.3.83

Telomere Length in Neurodegenerative Disorders

https://dnd.or.kr



However, results of several papers are inconsistent with these findings. One study has 
reported no correlation between telomere length and cognitive performance among non-
demented and demented people in long-life family study participants.36 It has also been 
reported that telomere length is not predictive of dementia or MCI conversion in the oldest 
old.37 One study has shown that both longer telomere length and shorter telomere length are 
associated with an increased risk of AD in the Rotterdam study.10 An in vivo study has shown 
that telomere shortening can reduce AD amyloid pathology in mice, suggesting that shorter 
telomere length could be beneficial in AD progression.38 This is in contrast to findings 
described above.

It remains unclear whether shorter or longer telomeres are preferable for AD. However, more 
studies have reported that shorter telomeres have harmful effects, whereas longer telomeres 
have protective effects on AD. This question should first be answered to understand the effect 
of telomere length on AD. Considering our finding that the annual rate of telomere length 
change is more important in sleep quality (including sleep duration, sleep latency, and sleep 
efficiency) than telomer length at a single time point and that poor sleep quality is strongly 
correlated with faster longitudinal shortening of telomere length,38 longitudinal or annual 
measurement of telomere length in healthy people and patients with MCI or dementia could 
provide some clues.

PD
PD is a progressive nervous system disorder that affects movement, causing tremors, 
stiffness, or slowing. It is the second most common neurodegenerative disease affecting 
approximately 2% of the population aged over 60 years.39,40 In contrast to AD, there have been 
few studies about the relationship between telomere length and findings about PD are much 
more conflicting than ones about AD.

Some studies are consistent with the hypothesis that people with shorter telomeres might be 
more vulnerable to PD. It has been reported that telomere length is shorter in patients with 
PD than in age-matched healthy controls.41 Wu et al.42 have shown that telomere length is 
significantly shortened in Chinese patients with PD than in controls and that the shortening 
of telomere length is independent of LRRK2 variants. Another study has reported that 
telomere length appears to be associated with the time to the onset of motor complications 
after levodopa treatment initiation.43 However, the significance of the association 
disappeared after adjusting for age at inclusion and disease duration, although relationships 
between telomere length and other PD-related phenotypes remained the same.43

However, some studies have reported conflicting results. For example, long telomere length 
at diagnosis has been reported to be a risk factor for dementia progression in idiopathic 
parkinsonism.44 Another study has reported that shorter telomere length is correlated with 
reduced PD risk.45

Other studies have shown no relationship between telomere length and PD. Wang et al.46 have 
reported that shorter telomeres are not related to the risk of PD. Hudson et al.47 have suggested 
that telomere shortening is not involved in the pathogenesis of PD by showing that longer 
telomere length is found in blood from patients with PD. However, a difference in telomere 
length is not found in the substantia nigra compared to controls. A meta-analysis has also 
suggested that there is no consistent evidence of shorter telomeres in patients with PD.48
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FTD and amyotrophic lateral sclerosis (ALS)
In the past, FTD and ALS were thought to be completely different diseases. However, the 
finding that C9orf72 gene mutation can cause both FTD and ALS suggests that they might 
be spectrum disorders.49,50 Unfortunately, only a few studies have reported the relationship 
between telomere length and FTD or ALS.

Regarding ALS, it has been reported that shorter telomeres are associated with earlier ALS 
onset in animal models.51 De Felice et al.52 have also reported that the telomere length of 50 
patients with sporadic ALS is significantly shorter than that of 50 healthy subjects. However, 
a case-control study including 1,241 European patients with ALS has shown that telomere 
length is longer in patients with ALS than in healthy controls, suggesting that longer 
telomere length is not favorable for ALS.53 In contrast, a Mendelian randomization study 
has suggested that there is no direct causal association between telomere length and ALS. 
However, Xia et al.54 have recently used a 2-sample Mendelian randomization approach and 
shown that longer telomere length is inversely associated with a lower risk of ALS. Therefore, 
more longitudinal studies are needed to resolve these discrepancies.

In terms of the association between telomere length and FTD, there have been no reports 
except our previous study,9 which shows that patients with FTD have longer telomere lengths. 
Nevertheless, our study had a small sample size. Thus, we could not conclude whether longer 
telomere length could be a cause of FTD. Therefore, more studies with a larger number of FTD 
patients and controls should be performed to determine the effect of telomere length on FTD.9

CONCLUSION

This review included a number of studies that focused on the relationship between telomere 
length and neurodegenerative disorders such as AD, PD, FTD, and ALS. Over 50% of papers 
reported that shorter telomere length could be a definite risk factor for neurodegenerative 
disorders. However, other studies reported that there were no relationship between them or 
that longer telomere length could be a risk factor. These conflicting results might be due to 
differences in study protocols and no lifestyle regulation before blood sampling as well as the 
use of different ethnicities and time points. Considering our finding that the amount of telomere 
length alteration might be more important than telomere length at a single time point, large-
scale longitudinal studies are necessary in the future. These studies should help us elucidate the 
causal relationship between telomere length and various neurodegenerative disorders.
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