DOI QR코드

DOI QR Code

다층 퍼셉트론 신경망을 이용한 사면원호 파괴 예측

Prediction of Slope Failure Arc Using Multilayer Perceptron

  • 마지훈 (연세대학교 건설환경공학과) ;
  • 윤태섭 (연세대학교 건설환경공학과)
  • Ma, Jeehoon (Dept. of Civil and Environmental Eng., Yonsei Univ.) ;
  • Yun, Tae Sup (Dept. of Civil and Environmental Eng., Yonsei Univ.)
  • 투고 : 2022.06.20
  • 심사 : 2022.08.12
  • 발행 : 2022.08.31

초록

사면의 안전율과 임계활동면을 다층 퍼셉트론 신경망(multi-layer perceptron, MLP)을 이용하여 구할 수 있도록 훈련하였다. 사면의 형상은 한국의 설계기준을 참고한 단순 사면으로, 건조한 경우와 지하수위가 존재하는 경우를 모두 고려하였으며 사면을 구성하는 토질의 물성은 세립분을 포함한 사질토로 고려하였다. 훈련에 필요한 데이터를 만들 때 한계평형해석법을 이용하여 42,000가지 경우의 사면안정해석을 수행하였고, 지하수위가 고려된 도메인의 해석에서 불포화토의 모관흡수력으로 인한 유효응력 증가를 고려하였다. 지하수와 유효응력의 분포를 사면안정해석에 적용할 수 있도록 정상상태 침투 해석을 수행하였다. 사면을 표현하는 물성을 입력하면 안전율과 원호 파괴면을 예측할 수 있는 MLP 모델과 모델의 성능을 정량적으로 평가할 수 있는 방법을 제시하였다.

Multilayer perceptron neural network was trained to determine the factor of safety and slip surface of the slope. Slope geometry is a simple slope based on Korean design standards, and the case of dry and existing groundwater levels are both considered, and the properties of the soil composing the slope are considered to be sandy soil including fine particles. When curating the data required for model training, slope stability analysis was performed in 42,000 cases using the limit equilibrium method. Steady-state seepage analysis of groundwater was also performed, and the results generated were applied to slope stability analysis. Results show that the multilayer perceptron model can predict the factor of safety and failure arc with high performance when the slope's physical properties data are input. A method for quantitative validation of the model performance is presented.

키워드

과제정보

본 연구는 한국연구재단(Nos. 2020R1A2C1014815, NRF-2021R1A5A1032433)과 한국토지주택공사 토지주택연구원의 지원으로 연구비 지원을 받아 수행된 것으로 해당 부처들에 깊은 감사를 드립니다.

참고문헌

  1. Azmoon, B., Biniyaz, A., Liu, Z., and Sun, Y. (2021), Image-Data-Driven Slope Stability Analysis for Preventing Landslides Using Deep Learning, IEEE Access, 9, 150623-150636. https://doi.org/10.1109/ACCESS.2021.3123501
  2. Bronnimann, C. S. (2011), Effect of groundwater on landslide triggering (No. THESIS), EPFL.
  3. Bui, X. N., Nguyen, H., Choi, Y., Nguyen-Thoi, T., Zhou, J., and Dou, J. (2020), Prediction of Slope Failure in Open-pit Mines Using a Novel Hybrid Artificial Intelligence Model based on Decision Tree and Evolution Algorithm, Scientific reports, Vol.10, No.1, pp.1-17. https://doi.org/10.1038/s41598-019-56847-4
  4. Bunz, S., Mienert, J., Bryn, P., and Berg, K. (2005), Fluid Flow Impact on Slope Failure from 3D Seismic Data: A Case Study in the Storegga Slide, Basin Research, Vol.17, No.1, pp.109-122. https://doi.org/10.1111/j.1365-2117.2005.00256.x
  5. Cai, F., Ugai, K., Wakai, A., and Li, Q. (1998), Effects of Horizontal Drains on Slope Stability under Rainfall by Three-dimensional Finite Element Analysis, Computers and Geotechnics, Vol.23, No.4, pp. 255-275. https://doi.org/10.1016/S0266-352X(98)00021-4
  6. Cai, F. and Ugai, K. (2004), Numerical Analysis of Rainfall Effects on Slope Stability, International Journal of Geomechanics, Vol.4, No.2, pp.69-78. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:2(69)
  7. Cho, S. E. (2019), Probabilistic Failure-time Analysis of Soil Slope under Rainfall Infiltration by Numerical Analysis, Journal of the Korean Geotechnical Society, Vol.35, No.12, pp.45-58. https://doi.org/10.7843/KGS.2019.35.12.45
  8. Daniel, C. (1973), One-at-a-time plans, Journal of the American statistical association, Vol.68, No.342, pp.353-360. https://doi.org/10.1080/01621459.1973.10482433
  9. Dawson, E. M., Roth, W. H., and Drescher, A. (1999), Slope Stability Analysis by Strength Reduction, Geotechnique, Vol.49, No.6, pp.835-840. https://doi.org/10.1680/geot.1999.49.6.835
  10. Duong, T. T., Do, D. M., and Yasuhara, K. (2019), Assessing the Effects of Rainfall Intensity and Hydraulic Conductivity on Riverbank Stability, Water, 11(4), p.741.
  11. Erzin, Y. and Cetin, T. (2013), The Prediction of the Critical Factor of Safety of Homogeneous Finite Slopes Using Neural Networks and Multiple Regressions, Computers & Geosciences, 51, pp.305-313. https://doi.org/10.1016/j.cageo.2012.09.003
  12. Ghorbanzadeh, O., Meena, S. R., Blaschke, T., and Aryal, J. (2019), UAV-based Slope Failure Detection Using Deep-learning Convolutional Neural Networks, Remote Sensing, Vol.11, No.17, p.2046.
  13. Hamm, N. A., Hall, J. W., and Anderson, M. G. (2006), Variance-based Sensitivity Analysis of the Probability of Hydrologically Induced Slope Instability, Computers & geosciences, Vol.32, No.6, pp.803-817. https://doi.org/10.1016/j.cageo.2005.10.007
  14. Hoang, N. D. and Pham, A. D. (2016), Hybrid Artificial Intelligence Approach based on Metaheuristic and Machine Learning for Slope Stability Assessment: A Multinational Data Analysis, Expert Systems with Applications, 46, pp.60-68. https://doi.org/10.1016/j.eswa.2015.10.020
  15. Iooss, B. and Lemaitre, P. (2015), A review on global sensitivity analysis methods, In Uncertainty management in simulation-optimization of complex systems (pp. 101-122), Springer, Boston, MA.
  16. Janbu, N. (1973), Slope stability computations, Publication of: Wiley (John) and Sons, Incorporated.
  17. Jung, Y. H., Kim, T., and Cho, W. (2014), Gmax of Reclaimed Ground on the Western Coast of Korea Using Various Field and Laboratory Measurements, Marine Georesources & Geotechnology, Vol.32, No.4, pp.351-367. https://doi.org/10.1080/1064119X.2013.764556
  18. Kim, K. Y. and Cho, S. E. (2006), A Study on the Probabilistic Stability Analysis of Slopes, Journal of the Korean Geotechnical Society, Vol.22, No.11, pp.101-111. https://doi.org/10.7843/KGS.2006.22.11.101
  19. Kim, Y. M. (2004), Slope Stability Analysis Considering Seepage Conditions by FEM Using Strength Reduction Technique, Journal of the Korean geotehnical society, (20), pp.97-102.
  20. Kong, D. S., Chang, Y. S., and Huh, J. H. (2015), Selecting of the Energy Performance Diagnosis Items through the Sensitivity Analysis of Existing Buildings, Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol.27, No.7, pp.354-361. https://doi.org/10.6110/KJACR.2015.27.7.354
  21. Lin, S., Zheng, H., Han, B., Li, Y., Han, C., and Li, W. (2022), Comparative Performance of Eight Ensemble Learning Approaches for the Development of Models of Slope Stability Prediction, Acta Geotechnica, pp.1-26.
  22. Linnainmaa, S. (1970), The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors (Doctoral dissertation, Master's Thesis (in Finnish), Univ. Helsinki).
  23. Lu, L., Wang, Z. J., Song, M. L., and Arai, K. (2015), Stability Analysis of Slopes with Ground Water during Earthquakes, Engineering Geology, 193, pp.288-296. https://doi.org/10.1016/j.enggeo.2015.05.001
  24. Matsui, T. and San, K. C. (1992), Finite Element Slope Stability Analysis by Shear Strength Reduction Technique, Soils and foundations, Vol.32, No.1, pp.59-70. https://doi.org/10.3208/sandf1972.32.59
  25. Maxwell, A. E., Sharma, M., Kite, J. S., Donaldson, K. A., Thompson, J. A., Bell, M. L., and Maynard, S. M. (2020), Slope Failure Prediction Using Random Forest Machine Learning and LiDAR in an Eroded Folded Mountain Belt, Remote Sensing, Vol.12, No.3, p.486.
  26. Ministry of Land, Infrastructure and Transport (2020), Korea Design Standard 11 70 05.
  27. Morgenstern, N. U. and Price, V. E. (1965), The Analysis of the Stability of General Slip Surfaces, Geotechnique, Vol.15, No.1, pp.79-93. https://doi.org/10.1680/geot.1965.15.1.79
  28. Morris, M. D. (1991), Factorial Sampling Plans for Preliminary Computational Experiments, Technometrics, Vol.33, No.2, pp.161-174. https://doi.org/10.1080/00401706.1991.10484804
  29. Ng, C. W. W. and Shi, Q. (1998), A Numerical Investigation of the Stability of Unsaturated Soil Slopes Subjected to Transient Seepage, Computers and geotechnics, Vol.22, No.1, pp.1-28. https://doi.org/10.1016/S0266-352X(97)00036-0
  30. NGII (National Geographic Information Institute) (2008), The Geography of Korea, The Ministry of Land, Transport and Maritime affairs. National Geographic Information Institute (국토지리정보원, 2008, 한국지리지-총론편-, 국토해양부 국토지리정보원).
  31. Oh, S., Mun, J. H., Kim, T. K., and Kim, Y. K. (2008), A Case Study of Rainfall-induced Slope Failures on the Effect of Unsaturated Soil Characteristics, KSCE Journal of Civil and Environmental Engineering Research, Vol.28, No.3C, pp.167-178. https://doi.org/10.12652/KSCE.2008.28.3C.167
  32. Park, C. S. and Ahn, S. J. (2019), An Analytical Study on the Slope Safety Factor Considering Various Conditions, Journal of the Korean Geotechnical Society, Vol.35, No.5, pp.31-41. https://doi.org/10.7843/KGS.2019.35.5.31
  33. Park, K. H., Jung, Y. H., and Chung, C. K. (2017), Evolution of Stiffness Anisotropy during Creep of Engineered Silty Sand in South Korea, KSCE Journal of Civil Engineering, Vol.21, No.6, pp.2168-2176. https://doi.org/10.1007/s12205-016-1105-1
  34. Qi, C. and Tang, X. (2018), Slope Stability Prediction Using Integrated Metaheuristic and Machine Learning Approaches: A Comparative Study, Computers & Industrial Engineering, 118, pp.112-122. https://doi.org/10.1016/j.cie.2018.02.028
  35. Rukhaiyar, S., Alam, M. N., and Samadhiya, N. K. (2018), A PSO-ANN Hybrid Model for Predicting Factor of Safety of Slope, International Journal of Geotechnical Engineering, Vol.12, No.6, pp.556-566.
  36. Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986), Learning Representations by Back-propagating Errors, Nature, Vol.323, No. 6088, pp.533-536. https://doi.org/10.1038/323533a0
  37. Sakellariou, M. G. and Ferentinou, M. D. (2005), A Study of Slope Stability Prediction Using Neural Networks, Geotechnical & Geological Engineering, Vol.23, No.4, pp.419-445. https://doi.org/10.1007/s10706-004-8680-5
  38. Shang, L., Nguyen, H., Bui, X. N., Vu, T. H., Costache, R., and Hanh, L. T. M. (2021), Toward State-of-the-art Techniques in Predicting and Controlling Slope Stability in Open-pit Mines based on Limit Equilibrium Analysis, Radial Basis Function Neural Network, and Brainstorm Optimization, Acta Geotechnica, pp.1-20.
  39. Singh, T. N., Gulati, A., Dontha, L., and Bhardwaj, V. (2008), Evaluating Cut Slope Failure by Numerical Analysis-a Case Dtudy, Natural hazards, Vol.47, No.2, pp.263-279. https://doi.org/10.1007/s11069-008-9219-5
  40. Sobol, I. Y. M. (1990), On Sensitivity Estimation for Nonlinear Mathematical Models, Matematicheskoe modelirovanie, Vol.2, No.1, pp.112-118.
  41. Song, Y. S. (2006), A Case Study on the Reinforcement of Stabilizing Piles against Slope Failures in a Cut Slope, The Journal of Engineering Geology, Vol.16, No.2, pp.189-199.
  42. Swiss Standard SN 670 010b, Characteristic Coefficients of soils, Association of Swiss Road and Traffic Engineers.
  43. Tian, W. (2013), A Review of Sensitivity Analysis Methods in Building Energy Analysis, Renewable and sustainable energy reviews, 20, pp.411-419. https://doi.org/10.1016/j.rser.2012.12.014
  44. Ullo, S. L., Mohan, A., Sebastianelli, A., Ahamed, S. E., Kumar, B., Dwivedi, R., and Sinha, G. R. (2021), A New Mask R-CNN-based Method for Improved Landslide Detection, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, pp.3799-3810. https://doi.org/10.1109/JSTARS.2021.3064981
  45. van Genuchten, M. T. (1980), A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils, Soil science society of America journal, Vol.44, No.5, pp.892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
  46. Wang, L., Hwang, J. H., Luo, Z., Juang, C. H., and Xiao, J. (2013), Probabilistic Back Analysis of Slope Failure-a Case Study in Taiwan, Computers and Geotechnics, 51, pp.12-23. https://doi.org/10.1016/j.compgeo.2013.01.008
  47. Wei, Z. L., Lu, Q., Sun, H. Y., and Shang, Y. Q. (2019), Estimating the Rainfall Threshold of a Deep-seated Landslide by Integrating Models for Predicting the Groundwater Level and Stability Analysis of the Slope, Engineering Geology, 253, pp.14-26. https://doi.org/10.1016/j.enggeo.2019.02.026
  48. Yeung, D. S., Cloete, I., Shi, D., and wY Ng, W. (2010), Sensitivity analysis for neural networks, Springer.
  49. Zhang, M., Dong, Y., and Sun, P. (2012), Impact of Reservoir Impoundment-caused Groundwater Level Changes on Regional Slope Stability: A Case Study in the Loess Plateau of Western China, Environmental earth sciences, Vol.66, No.6, pp.1715-1725. https://doi.org/10.1007/s12665-012-1728-6
  50. Zhu, D. Y., Lee, C. F., Qian, Q. H., and Chen, G. R. (2005), A Concise Algorithm for Computing the Factor of Safety Using the Morgenstern Price method, Canadian geotechnical journal, Vol.42, No.1, pp.272-278. https://doi.org/10.1139/t04-072