DOI QR코드

DOI QR Code

Transcriptional Regulatory Role of NELL2 in Preproenkephalin Gene Expression

  • Ha, Chang Man (Brain Research Core Facilities and Global Relation Center of Research Strategy Office, Korea Brain Research Institute) ;
  • Kim, Dong Hee (Department of Biological Sciences, University of Ulsan) ;
  • Lee, Tae Hwan (Department of Biological Sciences, University of Ulsan) ;
  • Kim, Han Rae (Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences) ;
  • Choi, Jungil (Bioenvironmental Science & Technology Division, Korea Institute of Toxicology) ;
  • Kim, Yoonju (Brain Research Core Facilities and Global Relation Center of Research Strategy Office, Korea Brain Research Institute) ;
  • Kang, Dasol (Department of Biological Sciences, University of Ulsan) ;
  • Park, Jeong Woo (Department of Biological Sciences, University of Ulsan) ;
  • Ojeda, Sergio R. (Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University) ;
  • Jeong, Jin Kwon (Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences) ;
  • Lee, Byung Ju (Department of Biological Sciences, University of Ulsan)
  • 투고 : 2021.12.27
  • 심사 : 2022.04.03
  • 발행 : 2022.08.31

초록

Preproenkephalin (PPE) is a precursor molecule for multiple endogenous opioid peptides Leu-enkephalin (ENK) and Met-ENK, which are involved in a wide variety of modulatory functions in the nervous system. Despite the functional importance of ENK in the brain, the effect of brain-derived factor(s) on PPE expression is unknown. We report the dual effect of neural epidermal growth factor (EGF)-like-like 2 (NELL2) on PPE gene expression. In cultured NIH3T3 cells, transfection of NELL2 expression vectors induced an inhibition of PPE transcription intracellularly, in parallel with downregulation of protein kinase C signaling pathways and extracellular signal-regulated kinase. Interestingly, these phenomena were reversed when synthetic NELL2 was administered extracellularly. The in vivo disruption of NELL2 synthesis resulted in an increase in PPE mRNA level in the rat brain, suggesting that the inhibitory action of intracellular NELL2 predominates the activation effect of extracellular NELL2 on PPE gene expression in the brain. Biochemical and molecular studies with mutant NELL2 structures further demonstrated the critical role of EGF-like repeat domains in NELL2 for regulation of PPE transcription. These are the first results to reveal the spatio-specific role of NELL2 in the homeostatic regulation of PPE gene expression.

키워드

과제정보

This research was supported by the Priority Research Centers Program (2014R1A6A1030318), the National Research Foundation of Korea (NRF-2020R1A2C1008080), KBRI research program through Korea Brain Research Institute funded by the Ministry of Science, ICT & Future Planning (No. 21-BR-03-02), and the Korean Government (MSIP) through the National Research Foundation of Korea (NRF-2020R1F1A1058459).

참고문헌

  1. Aihara, K., Kuroda, S., Kanayama, N., Matsuyama, S., Tanizawa, K., and Horie, M. (2003). A neuron-specific EGF family protein, NELL2, promotes survival of neurons through mitogen-activated protein kinases. Brain Res. Mol. Brain Res. 116, 86-93. https://doi.org/10.1016/S0169-328X(03)00256-0
  2. Berg-von der Emde, K., Dees, W.L., Hiney, J.K., Hill, D.F., Dissen, G.A., Costa, M.E., Moholt-Siebert, M., and Ojeda, S.R. (1995). Neurotrophins and the neuroendocrine brain: different neurotrophins sustain anatomically and functionally segregated subsets of hypothalamic dopaminergic neurons. J. Neurosci. 15, 4223-4237. https://doi.org/10.1523/JNEUROSCI.15-06-04223.1995
  3. Bodnar, R.J. (2017). Endogenous opiates and behavior: 2015. Peptides 88, 126-188. https://doi.org/10.1016/j.peptides.2016.12.004
  4. Borsook, D. and Hyman, S.E. (1995). Proenkephalin gene regulation in the neuroendocrine hypothalamus: a model of gene regulation in the CNS. Am. J. Physiol. 269(3 Pt 1), E393-E408.
  5. Chardin, P. and McCormick, F. (1999). Brefeldin A: the advantage of being uncompetitive. Cell 97, 153-155. https://doi.org/10.1016/S0092-8674(00)80724-2
  6. Choi, E.J., Ha, C.M., Choi, J., Kang, S.S., Choi, W.S., Park, S.K., Kim, K., and Lee, B.J. (2001). Low-density cDNA array-coupled to PCR differential display identifies new estrogen-responsive genes during the postnatal differentiation of the rat hypothalamus. Brain Res. Mol. Brain Res. 97, 115-128. https://doi.org/10.1016/S0169-328X(01)00302-3
  7. Choi, E.J., Kim, D.H., Kim, J.G., Kim, D.Y., Kim, J.D., Seol, O.J., Jeong, C.S., Park, J.W., Choi, M.Y., Kang, S.G., et al. (2010). Estrogen-dependent transcription of the NEL-like 2 (NELL2) gene and its role in protection from cell death. J. Biol. Chem. 285, 25074-25084. https://doi.org/10.1074/jbc.M110.100545
  8. Chomczynski, P. and Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156-159.
  9. Davies, E.V. and Hallett, M.B. (1996). Near membrane Ca2+ changes resulting from store release in neutrophils: detection by FFP-18. Cell Calcium 19, 355-362. https://doi.org/10.1016/S0143-4160(96)90076-7
  10. Dellovade, T.L., Kia, H.K., Zhu, Y.S., and Pfaff, D.W. (1999). Thyroid hormone coadministration inhibits the estrogen-stimulated elevation of preproenkephalin mRNA in female rat hypothalamic neurons. Neuroendocrinology 70, 168-174. https://doi.org/10.1159/000054473
  11. Duque-Diaz, E., Alvarez-Ojeda, O., and Covenas, R. (2019). Enkephalins and ACTH in the mammalian nervous system. Vitam. Horm. 111, 147-193. https://doi.org/10.1016/bs.vh.2019.05.001
  12. Feinberg, A.P. and Vogelstein, B. (1983). A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132, 6-13. https://doi.org/10.1016/0003-2697(83)90418-9
  13. Ha, C.M., Choi, J., Choi, E.J., Costa, M.E., Lee, B.J., and Ojeda, S.R. (2008). NELL2, a neuron-specific EGF-like protein, is selectively expressed in glutamatergic neurons and contributes to the glutamatergic control of GnRH neurons at puberty. Neuroendocrinology 88, 199-211. https://doi.org/10.1159/000139579
  14. Ha, C.M., Hwang, E.M., Kim, E., Lee, D.Y., Chang, S., Lee, B.J., Hong, S.G., and Park, J.Y. (2013). The molecular mechanism of NELL2 movement and secretion in hippocampal progenitor HiB5 cells. Mol. Cells 36, 527-533. https://doi.org/10.1007/s10059-013-0216-5
  15. Handford, P.A., Mayhew, M., Baron, M., Winship, P.R., Campbell, I.D., and Brownlee, G.G. (1991). Key residues involved in calcium-binding motifs in EGF-like domains. Nature 351, 164-167. https://doi.org/10.1038/351164a0
  16. Harlan, R.E., Shivers, B.D., Romano, G.J., Howells, R.D., and Pfaff, D.W. (1987). Localization of preproenkephalin mRNA in the rat brain and spinal cord by in situ hybridization. J. Comp. Neurol. 258, 159-184. https://doi.org/10.1002/cne.902580202
  17. Hawkins, P., Hanson, M.A., and Matthews, S.G. (2001). Maternal undernutrition in early gestation alters molecular regulation of the hypothalamic-pituitary-adrenal axis in the ovine fetus. J. Neuroendocrinol. 13, 855-861. https://doi.org/10.1046/j.1365-2826.2001.00709.x
  18. Henry, M.S., Gendron, L., Tremblay, M.E., and Drolet, G. (2017). Enkephalins: endogenous analgesics with an emerging role in stress resilience. Neural Plast. 2017, 1546125.
  19. Hwang, E.M., Kim, D.G., Lee, B.J., Choi, J., Kim, E., Park, N., Kang, D., Han, J., Choi, W.S., Hong, S.G., et al. (2007). Alternative splicing generates a novel non-secretable cytosolic isoform of NELL2. Biochem. Biophys. Res. Commun. 353, 805-811. https://doi.org/10.1016/j.bbrc.2006.12.115
  20. Jaworski, A., Tom, I., Tong, R.K., Gildea, H.K., Koch, A.W., Gonzalez, L.C., and Tessier-Lavigne, M. (2015). Operational redundancy in axon guidance through the multifunctional receptor Robo3 and its ligand NELL2. Science 350, 961-965. https://doi.org/10.1126/science.aad2615
  21. Jeong, J.K., Kim, H.R., Hwang, S.M., Park, J.W., and Lee, B.J. (2008a). Region- and neuronal phenotype-specific expression of NELL2 in the adult rat brain. Mol. Cells 26, 186-192.
  22. Jeong, J.K., Kim, J.G., Kim, H.R., Lee, T.H., Park, J.W., and Lee, B.J. (2017). A role of central NELL2 in the regulation of feeding behavior in rats. Mol. Cells 40, 186-194.
  23. Jeong, J.K., Ryu, B.J., Choi, J., Kim, D.H., Choi, E.J., Park, J.W., Park, J.J., and Lee, B.J. (2008b). NELL2 participates in formation of the sexually dimorphic nucleus of the pre-optic area in rats. J. Neurochem. 106, 1604-1613. https://doi.org/10.1111/j.1471-4159.2008.05505.x
  24. Khachaturian, H., Alessi, N.E., Munfakh, N., and Watson, S.J. (1983). Ontogeny of opioid and related peptides in the rat cns and pituitary: an immunocytochemical study. Life Sci. 33 Suppl 1, 61-64. https://doi.org/10.1016/0024-3205(83)90444-7
  25. Kim, D.H., Kim, H.R., Choi, E.J., Kim, D.Y., Kim, K.K., Kim, B.S., Park, J.W., and Lee, B.J. (2014). Neural epidermal growth factor-like like protein 2 (NELL2) promotes aggregation of embryonic carcinoma P19 cells by inducing N-cadherin expression. PLoS One 9, e85898.
  26. Kim, D.H., Kim, K.K., Lee, T.H., Eom, H., Kim, J.W., Park, J.W., Jeong, J.K., and Lee, B.J. (2021). Transcription factor TonEBP stimulates hyperosmolality-dependent arginine vasopressin gene expression in the mouse hypothalamus. Front. Endocrinol. (Lausanne) 12, 627343.
  27. Kim, D.Y., Kim, H.R., Kim, K.K., Park, J.W., and Lee, B.J. (2015). NELL2 function in the protection of cells against endoplasmic reticulum stress. Mol. Cells 38, 145-150.
  28. Kim, H., Ha, C.M., Choi, J., Choi, E.J., Jeon, J., Kim, C., Park, S.K., Kang, S.S., Kim, K., and Lee, B.J. (2002). Ontogeny and the possible function of a novel epidermal growth factor-like repeat domain-containing protein, NELL2, in the rat brain. J. Neurochem. 83, 1389-1400. https://doi.org/10.1046/j.1471-4159.2002.01245.x
  29. Kim, H.R., Kim, D.H., An, J.Y., Kang, D., Park, J.W., Hwang, E.M., Seo, E.J., Jang, I.H., Ha, C.M., and Lee, B.J. (2020). NELL2 function in axon development of hippocampal neurons. Mol. Cells 43, 581-589.
  30. Kiyozumi, D., Noda, T., Yamaguchi, R., Tobita, T., Matsumura, T., Shimada, K., Kodani, M., Kohda, T., Fujihara, Y., Ozawa, M., et al. (2020). NELL2-mediated lumicrine signaling through OVCH2 is required for male fertility. Science 368, 1132-1135. https://doi.org/10.1126/science.aay5134
  31. Kominato, Y., Tachibana, T., Dai, Y., Tsujino, H., Maruo, S., and Noguchi, K. (2003). Changes in phosphorylation of ERK and Fos expression in dorsal horn neurons following noxious stimulation in a rat model of neuritis of the nerve root. Brain Res. 967, 89-97. https://doi.org/10.1016/S0006-8993(02)04229-4
  32. Koshimizu, Y., Wu, S.X., Unzai, T., Hioki, H., Sonomura, T., Nakamura, K.C., Fujiyama, F., and Kaneko, T. (2008). Paucity of enkephalin production in neostriatal striosomal neurons: analysis with preproenkephalin-green fluorescent protein transgenic mice. Eur. J. Neurosci. 28, 2053-2064.
  33. Kuroda, S. and Tanizawa, K. (1999). Involvement of epidermal growth factor-like domain of NELL proteins in the novel protein-protein interaction with protein kinase C. Biochem. Biophys. Res. Commun. 265, 752-757. https://doi.org/10.1006/bbrc.1999.1753
  34. Lages, B. and Weiss, H.J. (1995). Original article: comparison of A23187 vs ionomycin-induced responses and cytosolic calcium increases in aequorin-loaded human platelets. Evidence for ionophore-specific differences in intracellular calcium release. Platelets 6, 359-365. https://doi.org/10.3109/09537109509078472
  35. Le Saux, M. and Di Paolo, T. (2005). Chronic estrogenic drug treatment increases preproenkephalin mRNA levels in the rat striatum and nucleus accumbens. Psychoneuroendocrinology 30, 251-260. https://doi.org/10.1016/j.psyneuen.2004.08.002
  36. Lee D.Y., Kim, E., Lee, Y.S., Ryu, H., Park, J.Y., and Hwang, E.M. (2014). The cytosolic splicing variant of NELL2 inhibits PKCβ1 in glial cells. Biochem. Biophys. Res. Commun. 454, 459-464. https://doi.org/10.1016/j.bbrc.2014.10.110
  37. Liu, J., Liu, D., Zhang, X., Li, Y., Fu, X., He, W., Li, M., Chen, P., Zeng, G., DiSanto, M.E., et al. (2021). NELL2 modulates cell proliferation and apoptosis via ERK pathway in the development of benign prostatic hyperplasia. Clin. Sci. (Lond.) 135, 1591-1608. https://doi.org/10.1042/CS20210476
  38. Livak, K.J. and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt Method. Methods 25, 402-408. https://doi.org/10.1006/meth.2001.1262
  39. Mei, M., Zhai, C., Li, X., Zhou, Y., Peng, W., Ma, L., Wang, Q., Iverson, B.L., Zhang, G., and Yi, L. (2017). Characterization of aromatic residue-controlled protein retention in the endoplasmic reticulum of Saccharomyces cerevisiae. J. Biol. Chem. 292, 20707-20719. https://doi.org/10.1074/jbc.M117.812107
  40. Morin, N., Morissette, M., Gregoire, L., and Di Paolo, T. (2016). mGlu5, dopamine D2 and adenosine A2A receptors in L-DOPA-induced dyskinesias. Curr. Neuropharmacol. 14, 481-493. https://doi.org/10.2174/1570159X14666151201185652
  41. Morissette, M., Le Saux, M., D'Astous, M., Jourdain, S., Al Sweidi, S., Morin, N., Estrada-Camarena, E., Mendez, P., Garcia-Segura, L.M., and Di Paolo, T. (2008). Contribution of estrogen receptors alpha and beta to the effects of estradiol in the brain. J. Steroid Biochem. Mol. Biol. 108, 327-338. https://doi.org/10.1016/j.jsbmb.2007.09.011
  42. Munro, S. and Pelham, H.R. (1987). A C-terminal signal prevents secretion of luminal ER proteins. Cell 48, 899-907. https://doi.org/10.1016/0092-8674(87)90086-9
  43. Nakakuki, T., Birtwistle, M.R., Saeki, Y., Yumoto, N., Ide, K., Nagashima, T., Brusch, L., Ogunnaike, B.A., Okada-Hatakeyama, M., and Kholodenko, B.N. (2010). Ligand-specific c-Fos expression emerges from the spatiotemporal control of ErbB network dynamics. Cell 141, 884-896. https://doi.org/10.1016/j.cell.2010.03.054
  44. Nelson, B.R., Claes, K., Todd, V., Chaverra, M., and Lefcort, F. (2004). NELL2 promotes motor and sensory neuron differentiation and stimulates mitogenesis in DRG in vivo. Dev. Biol. 270, 322-335. https://doi.org/10.1016/j.ydbio.2004.03.004
  45. Noda, M., Teranishi, Y., Takahashi, H., Toyosato, M., Notake, M., Nakanishi, S., and Numa, S. (1982). Isolation and structural organization of the human preproenkephalin gene. Nature 297, 431-434. https://doi.org/10.1038/297431a0
  46. Oh, D.Y., Wang, L., Ahn, R.S., Park, J.Y., Seong, J.Y., and Kwon, H.B. (2003). Differential G protein coupling preference of mammalian and nonmammalian gonadotropin-releasing hormone receptors. Mol. Cell. Endocrinol. 205, 89-98. https://doi.org/10.1016/S0303-7207(03)00204-1
  47. Pak, J.S., DeLoughery, Z.J., Wang, J., Acharya, N., Park, Y., Jaworski, A., and Ozkan, E. (2020). NELL2-Robo3 complex structure reveals mechanisms of receptor activation for axon guidance. Nat. Commun. 11, 1489.
  48. Puryear, C.B., Brooks, J., Tan, L., Smith, K., Li, Y., Cunningham, J., Todtenkopf, M.S., Dean, R.L., and Sanchez, C. (2020). Opioid receptor modulation of neural circuits in depression: what can be learned from preclinical data? Neurosci. Biobehav. Rev. 108, 658-678. https://doi.org/10.1016/j.neubiorev.2019.12.007
  49. Quinones-Jenab, V., Ogawa, S., Jenab, S., and Pfaff, D.W. (1996). Estrogen regulation of preproenkephalin messenger RNA in the forebrain of female mice. J. Chem. Neuroanat. 12, 29-36. https://doi.org/10.1016/S0891-0618(96)00175-5
  50. Rao, Z., Handford, P., Mayhew, M., Knott, V., Brownlee, G.G., and Stuart, D. (1995). The structure of a Ca(2+)-binding epidermal growth factor-like domain: its role in protein-protein interactions. Cell 82, 131-141. https://doi.org/10.1016/0092-8674(95)90059-4
  51. Ryu, B.J., Kim, H.R., Jeong, J.K., and Lee, B.J. (2011). Regulation of the female rat estrous cycle by a neural cell-specific epidermal growth factor-like repeat domain containing protein, NELL2. Mol. Cells 32, 203-207. https://doi.org/10.1007/s10059-011-0086-7
  52. Sgambato, V., Pages, C., Rogard, M., Besson, M.J., and Caboche, J. (1998). Extracellular signal-regulated kinase (ERK) controls immediate early gene induction on corticostriatal stimulation. J. Neurosci. 18, 8814-8825. https://doi.org/10.1523/JNEUROSCI.18-21-08814.1998
  53. Spool, J.A., Stevenson, S.A., Angyal, C.S., and Riters, L.V. (2016). Contributions of testosterone and territory ownership to sexually-motivated behaviors and mRNA expression in the medial preoptic area of male European starlings. Horm. Behav. 86, 36-44. https://doi.org/10.1016/j.yhbeh.2016.09.004
  54. Takahashi, K., Fujita, T., and Takeuchi, T. (1995). Production of bioactive enkephalin from the nonendocrine cell lines COS-7, NIH3T3, Ltk-, and C2C12. Peptides 16, 933-938. https://doi.org/10.1016/0196-9781(95)00061-N
  55. Yamamoto, N., Kashiwagi, M., Ishihara, M., Kojima, T., Maturana, A.D., Kuroda, S., and Niimi, T. (2019). Robo2 contains a cryptic binding site for neural EGFL-like (NELL) protein 1/2. J. Biol. Chem. 294, 4693-4703. https://doi.org/10.1074/jbc.RA118.005819